Sums of four squareful numbers

Alec Shute

Browning group, IST Austria

May 14, 2021

Definition

A nonzero integer *n* is squareful if $p|n \implies p^2|n$ (example: $72 = 2^3 \times 3^2$).

Every nonzero squareful number n can be written uniquely in the form n = x²y³, for y ∈ Z_{≠0} square-free and x ∈ N. Therefore

$$\begin{split} &\#\{n \leq B : n \text{ squareful}\} \\ &\asymp \sum_{\substack{|y| \leq B^{1/3} \\ y \text{ square-free}}} \#\{x \in \mathbb{N} : x^2 y^3 \leq B\} \asymp \sum_{\substack{|y| \leq B^{1/3} \\ y \text{ square-free}}} \left(\frac{B^{1/2}}{|y|^{3/2}} + O(1)\right) \asymp B^{1/2}. \end{split}$$

< ロト < 同ト < ヨト < ヨ

Definition

A nonzero integer *n* is squareful if $p|n \implies p^2|n$ (example: $72 = 2^3 \times 3^2$).

Every nonzero squareful number n can be written uniquely in the form n = x²y³, for y ∈ Z_{≠0} square-free and x ∈ N. Therefore

$$\begin{split} &\#\{n \leq B : n \text{ squareful}\} \\ &\asymp \sum_{\substack{|y| \leq B^{1/3} \\ y \text{ square-free}}} \#\{x \in \mathbb{N} : x^2 y^3 \leq B\} \asymp \sum_{\substack{|y| \leq B^{1/3} \\ y \text{ square-free}}} \left(\frac{B^{1/2}}{|y|^{3/2}} + O(1)\right) \asymp B^{1/2}. \end{split}$$

Define

$$N_k(B) = \# \left\{ z_1, \ldots, z_k \in \mathbb{Z}_{\neq 0} : \begin{array}{c} z_1, \ldots, z_k \text{ squareful}, |z_1|, \ldots, |z_k| \leq B, \\ \gcd(z_1, \ldots, z_k) = 1, z_1 + \cdots + z_k = 0 \end{array} \right\}.$$

Naive heuristic: $N_k(B) \asymp B^{\frac{k}{2}-1}$.

• Campana points provide a way to interpolate between rational and integral points.

Image: Image:

- Campana points provide a way to interpolate between rational and integral points.
- Let K be a field. A Campana orbifold is a pair (X, D), where X is a smooth variety over K and

$$D = \sum_{\alpha \in \mathcal{A}} \epsilon_{\alpha} D_{\alpha}$$

is an effective Weil \mathbb{Q} -divisor of X over K such that

- Solution For all α ∈ A, either ε_α = 1 or ε_α takes the form 1 − 1/m_α for some m_α ∈ Z_{>2}.
- **2** The support $D_{\text{red}} = \sum_{\alpha \in \mathcal{A}} D_{\alpha}$ of *D* has strict normal crossings on *X*.

- Campana points provide a way to interpolate between rational and integral points.
- Let K be a field. A Campana orbifold is a pair (X, D), where X is a smooth variety over K and

$$D = \sum_{\alpha \in \mathcal{A}} \epsilon_{\alpha} D_{\alpha}$$

is an effective Weil \mathbb{Q} -divisor of X over K such that

- For all $\alpha \in A$, either $\epsilon_{\alpha} = 1$ or ϵ_{α} takes the form $1 1/m_{\alpha}$ for some $m_{\alpha} \in \mathbb{Z}_{\geq 2}$.
- 3 The support $D_{\text{red}} = \sum_{\alpha \in \mathcal{A}} D_{\alpha}$ of D has strict normal crossings on X.
- Fix a good integral model (X, D) over O_{K,S}. The Campana points (X, D)(O_{K,S}) are K-rational points P ∈ X(K) such that for all α and all places v ∉ S, the intersection multiplicity of P and D_α at v is either 0 or ≥ m_α. (The *intersection multiplicity* of P and D_α at v is the colength of the pullback of D_α via P_v as an ideal in O_v.)

< □ > < □ > < □ > < □ > < □ > < □ >

- Campana points provide a way to interpolate between rational and integral points.
- Let K be a field. A Campana orbifold is a pair (X, D), where X is a smooth variety over K and

$$D = \sum_{\alpha \in \mathcal{A}} \epsilon_{\alpha} D_{\alpha}$$

is an effective Weil \mathbb{Q} -divisor of X over K such that

- Solution For all α ∈ A, either ε_α = 1 or ε_α takes the form 1 − 1/m_α for some m_α ∈ Z_{>2}.
- 3 The support $D_{\text{red}} = \sum_{\alpha \in \mathcal{A}} D_{\alpha}$ of D has strict normal crossings on X.
- Fix a good integral model (X, D) over O_{K,S}. The Campana points (X, D)(O_{K,S}) are K-rational points P ∈ X(K) such that for all α and all places v ∉ S, the intersection multiplicity of P and D_α at v is either 0 or ≥ m_α. (The *intersection multiplicity* of P and D_α at v is the colength of the pullback of D_α via P_v as an ideal in O_v.)
- We have $\mathcal{X}^{\circ}(\mathcal{O}_{K,S}) \subseteq (\mathcal{X}, \mathcal{D})(\mathcal{O}_{K,S}) \subseteq X(K).$

< □ > < □ > < □ > < □ > < □ > < □ >

A Manin-type conjecture for Campana points

• For an irreducible variety X over K, a subset A ⊂ X(K) is type I if A is a proper closed subvariety of X, and type II if A = φ(V(K)), where V is an integral projective variety with dim(V) = dim(X) and φ: V → X is a dominant morphism of degree at least 2. A thin set of X(K) is a subset of a finite union of type I and type II sets. A thin set of Campana O_{K,S}-points is the intersection of a thin set of X(K) with the set of Campana points (X, D)(O_{K,S}).

A Manin-type conjecture for Campana points

• For an irreducible variety X over K, a subset A ⊂ X(K) is type I if A is a proper closed subvariety of X, and type II if A = φ(V(K)), where V is an integral projective variety with dim(V) = dim(X) and φ: V → X is a dominant morphism of degree at least 2. A thin set of X(K) is a subset of a finite union of type I and type II sets. A thin set of Campana O_{K,S}-points is the intersection of a thin set of X(K) with the set of Campana points (X, D)(O_{K,S}).

PSTV-A Conjecture (Pieropan, Smeets, Tanimoto, Várilly-Alvarado)

If (X, D) is a Fano Campana orbifold, and H is a suitable height function, then there is a thin set T such that

 $\#\{P \in (\mathcal{X}, \mathcal{D})(\mathcal{O}_{\mathcal{K}, \mathcal{S}}) \setminus \mathcal{T} : H(P) \leq B\} \sim cB^{\mathfrak{a}}(\log B)^{b-1}.$

Example: $N_k(B)$

- Let (X, D) be a Campana orbifold, so D = Σ_{α∈A}(1 1/m_α)D_α for m_α ∈ ℤ_{≥2}. Fix a good integral model (X, D) over O_{K,S}. The Campana points (X, D)(O_{K,S}) are K-rational points P ∈ X(K) such that for all α and all places v ∉ S, the intersection multiplicity of P and D_α at v is either 0 or ≥ m_α.
- Take the Campana orbifold (X, D), where $X = \mathbb{P}_{\mathbb{Q}}^{k-2}$ and $D = \sum_{i=1}^{k} \frac{1}{2}D_i$, with

$$D_i = \begin{cases} \{z_i = 0\}, & \text{if } 1 \le i \le k-1 \\ \{z_1 + \dots + z_{k-1} = 0\}, & \text{if } i = k. \end{cases}$$

Choose a height $H(z) = \max(|z_1|, \ldots, |z_{k-1}|, |z_1 + \cdots + z_{k-1}|)$, for a representative $(z_1, \ldots, z_{k-1}) \in \mathbb{Z}_{prim}^{k-1}$ of $z \in \mathbb{P}^{k-2}(\mathbb{Q})$.

Example: $N_k(B)$

- Let (X, D) be a Campana orbifold, so D = Σ_{α∈A}(1 1/m_α)D_α for m_α ∈ ℤ_{≥2}. Fix a good integral model (X, D) over O_{K,S}. The Campana points (X, D)(O_{K,S}) are K-rational points P ∈ X(K) such that for all α and all places v ∉ S, the intersection multiplicity of P and D_α at v is either 0 or ≥ m_α.
- Take the Campana orbifold (X, D), where $X = \mathbb{P}_{\mathbb{Q}}^{k-2}$ and $D = \sum_{i=1}^{k} \frac{1}{2}D_i$, with

$$D_i = \begin{cases} \{z_i = 0\}, & \text{if } 1 \le i \le k-1 \\ \{z_1 + \dots + z_{k-1} = 0\}, & \text{if } i = k. \end{cases}$$

Choose a height $H(z) = \max(|z_1|, \ldots, |z_{k-1}|, |z_1 + \cdots + z_{k-1}|)$, for a representative $(z_1, \ldots, z_{k-1}) \in \mathbb{Z}_{prim}^{k-1}$ of $z \in \mathbb{P}^{k-2}(\mathbb{Q})$.

• The intersection multiplicities of z and D_1, \ldots, D_k at p are respectively the p-adic valuations of $z_1, \ldots, z_{k-1}, z_1 + \cdots + z_{k-1}$.

Example: $N_k(B)$

- Let (X, D) be a Campana orbifold, so D = Σ_{α∈A}(1 1/m_α)D_α for m_α ∈ ℤ_{≥2}. Fix a good integral model (X, D) over O_{K,S}. The Campana points (X, D)(O_{K,S}) are K-rational points P ∈ X(K) such that for all α and all places v ∉ S, the intersection multiplicity of P and D_α at v is either 0 or ≥ m_α.
- Take the Campana orbifold (X, D), where $X = \mathbb{P}_{\mathbb{Q}}^{k-2}$ and $D = \sum_{i=1}^{k} \frac{1}{2}D_i$, with

$$D_i = \begin{cases} \{z_i = 0\}, & \text{if } 1 \le i \le k-1 \\ \{z_1 + \dots + z_{k-1} = 0\}, & \text{if } i = k. \end{cases}$$

Choose a height $H(z) = \max(|z_1|, \ldots, |z_{k-1}|, |z_1 + \cdots + z_{k-1}|)$, for a representative $(z_1, \ldots, z_{k-1}) \in \mathbb{Z}_{prim}^{k-1}$ of $z \in \mathbb{P}^{k-2}(\mathbb{Q})$.

- The intersection multiplicities of z and $\mathcal{D}_1, \ldots, \mathcal{D}_k$ at p are respectively the p-adic valuations of $z_1, \ldots, z_{k-1}, z_1 + \cdots + z_{k-1}$.
- The PSTV-A conjecture predicts N_k(B) ~ cB^{k/2-1} (after the potential removal of a thin set).

• $N_k(B) \sim c_k B^{\frac{k}{2}-1}$ for any $k \geq 5$. (Van Valckenborgh, 2012)

The PSTV-A conjecture

- $N_k(B) \sim c_k B^{\frac{k}{2}-1}$ for any $k \ge 5$. (Van Valckenborgh, 2012)
- For $N_3(B)$ (corresponding to $X = \mathbb{P}^1_{\mathbb{Q}}$ with divisor $D = \frac{1}{2}[0] + \frac{1}{2}[1] + \frac{1}{2}[\infty]$), we only have the bounds

$$cB^{1/2} \leq N_3(B) \ll_{\epsilon} B^{3/5+\epsilon}.$$

The PSTV-A conjecture

- $N_k(B) \sim c_k B^{\frac{k}{2}-1}$ for any $k \ge 5$. (Van Valckenborgh, 2012)
- For $N_3(B)$ (corresponding to $X = \mathbb{P}^1_{\mathbb{Q}}$ with divisor $D = \frac{1}{2}[0] + \frac{1}{2}[1] + \frac{1}{2}[\infty]$), we only have the bounds

$$cB^{1/2} \leq N_3(B) \ll_{\epsilon} B^{3/5+\epsilon}.$$

(Browning, Van Valckenborgh, 2012)

• Hyperplanes in \mathbb{P}^n , with $\sum_{\substack{0 \le i \le n+1 \ i \ne j}} \frac{1}{m_i(m_i+1)} \ge 1$ for some *j*. (Browning, Yamagishi, 2018)

The PSTV-A conjecture

- $N_k(B) \sim c_k B^{\frac{k}{2}-1}$ for any $k \ge 5$. (Van Valckenborgh, 2012)
- For $N_3(B)$ (corresponding to $X = \mathbb{P}^1_{\mathbb{Q}}$ with divisor $D = \frac{1}{2}[0] + \frac{1}{2}[1] + \frac{1}{2}[\infty]$), we only have the bounds

$$cB^{1/2} \leq N_3(B) \ll_{\epsilon} B^{3/5+\epsilon}.$$

- Hyperplanes in \mathbb{P}^n , with $\sum_{\substack{0 \le i \le n+1 \ i \ne j}} \frac{1}{m_i(m_i+1)} \ge 1$ for some *j*. (Browning, Yamagishi, 2018)
- Vector group compactifications. (PSTV-A, 2019)

- $N_k(B) \sim c_k B^{\frac{k}{2}-1}$ for any $k \ge 5$. (Van Valckenborgh, 2012)
- For $N_3(B)$ (corresponding to $X = \mathbb{P}^1_{\mathbb{Q}}$ with divisor $D = \frac{1}{2}[0] + \frac{1}{2}[1] + \frac{1}{2}[\infty]$), we only have the bounds

$$cB^{1/2} \leq N_3(B) \ll_{\epsilon} B^{3/5+\epsilon}.$$

- Hyperplanes in \mathbb{P}^n , with $\sum_{\substack{0 \le i \le n+1 \ i \ne j}} \frac{1}{m_i(m_i+1)} \ge 1$ for some *j*. (Browning, Yamagishi, 2018)
- Vector group compactifications. (PSTV-A, 2019)
- Split toric varieties via hyperbola method. (Pieropan, Schindler, 2020)

- $N_k(B) \sim c_k B^{\frac{k}{2}-1}$ for any $k \ge 5$. (Van Valckenborgh, 2012)
- For $N_3(B)$ (corresponding to $X = \mathbb{P}^1_{\mathbb{Q}}$ with divisor $D = \frac{1}{2}[0] + \frac{1}{2}[1] + \frac{1}{2}[\infty]$), we only have the bounds

$$cB^{1/2} \leq N_3(B) \ll_{\epsilon} B^{3/5+\epsilon}.$$

- Hyperplanes in \mathbb{P}^n , with $\sum_{\substack{0 \le i \le n+1 \ i \ne j}} \frac{1}{m_i(m_i+1)} \ge 1$ for some *j*. (Browning, Yamagishi, 2018)
- Vector group compactifications. (PSTV-A, 2019)
- Split toric varieties via hyperbola method. (Pieropan, Schindler, 2020)
- Biequivariant compactifications of the Heisenberg group. (Xiao, 2020)

- $N_k(B) \sim c_k B^{\frac{k}{2}-1}$ for any $k \ge 5$. (Van Valckenborgh, 2012)
- For $N_3(B)$ (corresponding to $X = \mathbb{P}^1_{\mathbb{Q}}$ with divisor $D = \frac{1}{2}[0] + \frac{1}{2}[1] + \frac{1}{2}[\infty]$), we only have the bounds

$$cB^{1/2} \leq N_3(B) \ll_{\epsilon} B^{3/5+\epsilon}.$$

- Hyperplanes in \mathbb{P}^n , with $\sum_{\substack{0 \le i \le n+1 \ i \ne j}} \frac{1}{m_i(m_i+1)} \ge 1$ for some *j*. (Browning, Yamagishi, 2018)
- Vector group compactifications. (PSTV-A, 2019)
- Split toric varieties via hyperbola method. (Pieropan, Schindler, 2020)
- Biequivariant compactifications of the Heisenberg group. (Xiao, 2020)
- Powerful values of norm forms. (Streeter, 2020)

•
$$N_4(B) = \# \left\{ z_1, \ldots, z_4 \in \mathbb{Z}_{\neq 0} : \begin{array}{l} z_1, \ldots, z_4 \text{ squareful}, |z_1|, \ldots, |z_4| \leq B, \\ \gcd(z_1, \ldots, z_4) = 1, z_1 + z_2 + z_3 + z_4 = 0 \end{array} \right\}.$$

メロト メポト メヨト メヨト

The case k = 4

•
$$N_4(B) = \# \left\{ z_1, \ldots, z_4 \in \mathbb{Z}_{\neq 0} : \begin{array}{l} z_1, \ldots, z_4 \text{ squareful}, |z_1|, \ldots, |z_4| \leq B, \\ \gcd(z_1, \ldots, z_4) = 1, z_1 + z_2 + z_3 + z_4 = 0 \end{array} \right\}.$$

• In fact, $N_4(B) \gg B \log B$.

э

イロト イヨト イヨト イ

The case k = 4

•
$$N_4(B) = \# \left\{ z_1, \ldots, z_4 \in \mathbb{Z}_{\neq 0} : \begin{array}{l} z_1, \ldots, z_4 \text{ squareful}, |z_1|, \ldots, |z_4| \leq B, \\ \gcd(z_1, \ldots, z_4) = 1, z_1 + z_2 + z_3 + z_4 = 0 \end{array} \right\}.$$

- In fact, $N_4(B) \gg B \log B$.
- For a fixed $\mathbf{y} = (y_1, \dots, y_4) \in (\mathbb{Z}_{
 eq 0})^4$, let

$$N_{y}(B) = \# \left\{ \begin{array}{cc} y_{1}^{1}x_{1}^{2} + \dots + y_{4}^{3}x_{4}^{2} = 0, \\ x_{1}, \dots, x_{4} \in \mathbb{Z}_{\neq 0} : & gcd(y_{1}^{3}x_{1}^{2}, \dots, y_{4}^{3}x_{4}^{2}) = 1, \\ & |y_{1}^{3}x_{1}^{2}|, \dots, |y_{4}^{3}x_{4}^{2}| \leq B \end{array} \right\}$$

Then

$$N_4(B) = \sum_{\substack{\mathbf{y} \in (\mathbb{Z}_{\neq 0})^4 \ y_1, \dots, y_4 ext{ square-free}}} N_{\mathbf{y}}(B),$$

and

$$N_{\mathbf{y}}(B) \sim \begin{cases} c_{\mathbf{y}}B, & \text{if } y_1 \cdots y_4 \neq \Box, \\ c_{\mathbf{y}}B \log B, & \text{if } y_1 \cdots y_4 = \Box. \end{cases}$$

→ < Ξ →</p>

Image: Image:

The main theorem

Define
$$\mathcal{T} = \# \left\{ z_1, \dots, z_4 \in \mathbb{Z}_{\neq 0} : \begin{array}{l} z_1, \dots, z_4 \text{ squareful, } gcd(z_1, \dots, z_4) = 1, \\ z_1 + z_2 + z_3 + z_4 = 0, \ z_1 \cdots z_4 = \Box \end{array} \right\}$$

Theorem (S., 2021)

The set \mathcal{T} is a thin set of Campana points. After removing it, the count $N_4(B)$ becomes

$$\mathsf{N}(B) = \mathsf{c}B + O_\epsilon(B^{734/735+\epsilon})$$

for an explicit constant c > 0. The power of B and log B in the main term agree with the PSTV-A conjecture.

$$N(B) = \sum_{\substack{\mathbf{y} \in (\mathbb{Z}_{\neq 0})^4 \\ y_1, \dots, y_4 \text{ square-free} \\ \mathbf{y}_1 \cdots \mathbf{y}_4 \neq \Box}} N_{\mathbf{y}}(B).$$

We need enough uniformity in our estimates for $N_y(B)$ that we can take this sum over y.

For any
$$\mathbf{a} \in (\mathbb{Z}_{\neq 0})^4$$
, let $N'_{\mathbf{a}}(B) = \# \left\{ \mathbf{x} \in \mathbb{N}^4 : \sum_{i=1}^4 a_i x_i^2 = 0, \max_{1 \leq i \leq 4} |a_i x_i^2| \leq B \right\}$.

Sketch proof

Theorem (S., 2021)

Let
$$\mathbf{a} \in (\mathbb{Z}_{\neq 0})^4$$
 and define $A = \mathbf{a}_1 \cdots \mathbf{a}_4$, $\Delta = \prod_{i=1}^4 \operatorname{gcd}\left(\mathbf{a}_i, \prod_{j \neq i} \mathbf{a}_j\right)$. If $A \neq \Box$ and $|A| \leq B^{4/7}$, then
 $N'_{\mathbf{a}}(B) = \frac{\mathfrak{S}_{\mathbf{a}}\sigma_{\infty}(\mathbf{a})B}{|A|^{1/2}} + O_{\epsilon}\left(\frac{B^{41/42+\epsilon}\Delta^{1/3}}{|A|^{11/24}}\right)$.

The proof uses "A new form of the circle method, and its application to quadratic forms" (Heath-Brown 1995).

$$\mathsf{N}_{\mathsf{w},\mathsf{a}}'(B) = \frac{1 + O_{\mathsf{N}}(B^{-\mathsf{N}})}{B} \sum_{\mathsf{c} \in \mathbb{Z}^4} \sum_{q=1}^{\infty} q^{-4} S_{q,\mathsf{a}}(\mathsf{c}) I_{q,\mathsf{a}}(\mathsf{c}),$$

where w is a smooth weight approximating $1_{[-1,1]^4}$ and

$$\begin{split} S_{q,\mathbf{a}}(\mathbf{c}) &= \sum_{\substack{k \mod q \\ \gcd(k,q)=1}} \sum_{b \mod q} e_q \left(k \sum_{i=1}^4 a_i b_i^2 + \mathbf{b} \cdot \mathbf{c} \right), \\ I_{q,\mathbf{a}}(\mathbf{c}) &= \int_{\mathbb{R}^4} w \left(\sqrt{\frac{|a_1|}{B}} x_1, \dots, \sqrt{\frac{|a_4|}{B}} x_4 \right) h \left(\frac{q}{B^{1/2}}, \frac{\sum_{i=1}^4 a_i x_i^2}{B} \right) e_q(-\mathbf{c} \cdot \mathbf{x}) \, \mathrm{d}\mathbf{x}. \end{split}$$

Alec Shute (Browning group, IST Austria)

The leading constant

$$c = \frac{1}{16} \sum_{\substack{\mathbf{y} \in (\mathbb{Z}_{\neq 0})^4 \\ y_1, \dots, y_4 \text{ square-free} \\ \mathbf{y}_1 \cdots \mathbf{y}_4 \neq \Box}} \frac{\sigma_{\infty}(\mathbf{y})}{|y_1 \cdots y_4|^{3/2}} \prod_{p} \lim_{N \to \infty} \left(\frac{M_N(\mathbf{y}, p)}{p^{3N}} \right),$$

where

$$M_n(\mathbf{y}, p) = \# \left\{ \boldsymbol{m} \pmod{p^n} : \sum_{i=1}^4 y_i^3 m_i^2 \equiv 0 \pmod{p^n}, p \nmid m_j y_j \text{ for some } j \right\},$$

$$\sigma_{\infty}(\mathbf{y}) = \int_{-\infty}^{\infty} \int_{[-1,1]^4} e(-\theta(\operatorname{sgn}(y_1)x_1^2 + \dots + \operatorname{sgn}(y_4)x_4^2)) \, \mathrm{d}\mathbf{x} \, \mathrm{d}\theta.$$

The constant from the PSTV-A conjecture is

$$egin{aligned} c_{ ext{PSTV-A}} &= rac{1}{16} \int_{\overline{\mathcal{U}(\mathbb{Q})}_{\epsilon}} H_D \; \mathrm{d} au_X \ &= rac{1}{16} \sigma_\infty \prod_p (1-p^{-1}) \sigma_p. \end{aligned}$$

э

More thin sets

Let Q_y be the quadric ∑⁴_{i=1} y³_ix²_i = 0. Each c_y contributes a positive proportion to c, and corresponds to a thin set of Campana points.

$$\begin{split} \varphi_{\mathbf{y}} \colon \, Q_{\mathbf{y}} \to \mathbb{P}^{2}, \\ [x_{0}:x_{1}:x_{2}:x_{3}] \mapsto [y_{0}^{3}x_{0}^{2}:y_{1}^{3}x_{1}^{2}:y_{2}^{3}x_{2}^{2}]. \end{split}$$

The image $\varphi_{\mathbf{y}}(Q_{\mathbf{y}}(\mathbb{Q}))$ is a type II thin set of $\mathbb{P}^{2}(\mathbb{Q})$.

More thin sets

Let Q_y be the quadric ∑⁴_{i=1} y³_ix²_i = 0. Each c_y contributes a positive proportion to c, and corresponds to a thin set of Campana points.

$$\begin{split} \varphi_{\mathbf{y}} \colon \, Q_{\mathbf{y}} \to \mathbb{P}^{2}, \\ [x_{0}:x_{1}:x_{2}:x_{3}] \mapsto [y_{0}^{3}x_{0}^{2}:y_{1}^{3}x_{1}^{2}:y_{2}^{3}x_{2}^{2}]. \end{split}$$

The image $\varphi_{\mathbf{y}}(Q_{\mathbf{y}}(\mathbb{Q}))$ is a type II thin set of $\mathbb{P}^{2}(\mathbb{Q})$.

• Let $\mathcal{T}_{y} = \varphi_{y}(Q_{y}(\mathbb{Q})) \cap (\mathcal{X}, \mathcal{D})(\mathbb{Z})$. Then

$$(\mathcal{X},\mathcal{D})(\mathbb{Z}) = \bigsqcup_{\substack{\mathbf{y} \in (\mathbb{Z}_{\neq 0})^4 \\ y_1, \dots, y_4 ext{ square-free} \\ y_1 \cdots y_4 \neq \Box}} \mathcal{T}_{\mathbf{y}}.$$

More thin sets

Let Q_y be the quadric ∑⁴_{i=1} y³_ix²_i = 0. Each c_y contributes a positive proportion to c, and corresponds to a thin set of Campana points.

$$\begin{split} \varphi_{\mathbf{y}} \colon \, Q_{\mathbf{y}} \to \mathbb{P}^2, \\ [x_0: x_1: x_2: x_3] \mapsto [y_0^3 x_0^2: y_1^3 x_1^2: y_2^3 x_2^2]. \end{split}$$

The image $\varphi_{\mathbf{y}}(Q_{\mathbf{y}}(\mathbb{Q}))$ is a type II thin set of $\mathbb{P}^{2}(\mathbb{Q})$.

• Let $\mathcal{T}_{y} = \varphi_{y}(Q_{y}(\mathbb{Q})) \cap (\mathcal{X}, \mathcal{D})(\mathbb{Z})$. Then

$$(\mathcal{X}, \mathcal{D})(\mathbb{Z}) = \bigsqcup_{\substack{\mathbf{y} \in (\mathbb{Z}_{\neq 0})^4 \\ y_1, \dots, y_4 \text{ square-free} \\ y_1 \cdots y_4 \neq \Box}} \mathcal{T}_{\mathbf{y}}.$$

• Therefore any constant in (0, c] could be obtained by the removal of an appropriate thin set.

Squareful values of binary forms

Take X = P¹_Q, and let H be the height on X(Q) given by H([x : y]) = max(|x|, |y|) for (x, y) ∈ Z²_{prim}. Let D be the divisor ½V(ax² + by²), where a ≡ b ≡ 1 (mod 4) and μ²(ab) = 1. Consider the orbifold (X, D) with the obvious good integral model (X, D) over Z. The corresponding counting problem is

$$\mathcal{N}(B) = rac{1}{2} \# \left\{ (x,y) \in \mathbb{Z}^2_{\mathsf{prim}} : |x|, |y| \le B, \mathsf{a} x^2 + \mathsf{b} y^2 ext{ squareful}
ight\}.$$

Theorem (S., 2021)

The PSTV-A conjecture does not hold in the above setup when a = 37, b = 109.

$$c_{\text{PSTV-A}} = R \prod_{p \nmid 2ab} \left(1 + \frac{1 + \left(\frac{-ab}{p}\right)}{(1 + p^{-1})p^{3/2}} \right),$$
$$c = R \sum_{k \mid a} \sum_{l \mid b} \prod_{p \nmid 2ab} \left(\left(\frac{b}{k}\right) \left(\frac{a}{l}\right) + \frac{\left(\frac{bp}{k}\right) \left(\frac{ap}{l}\right) \left(1 + \left(\frac{-ab}{p}\right)\right)}{(1 + p^{-1})p^{3/2}} \right)$$

When a = 37, b = 109, we have $c < c_{PSTV-A}$ and so thin sets cannot explain the discrepancy between the constants.

• Under what circumstances is the prediction for the constant from the PSTV-A conjecture correct, and how can we fix it in the cases where it isn't?

- Under what circumstances is the prediction for the constant from the PSTV-A conjecture correct, and how can we fix it in the cases where it isn't?
- Can we formulate a geometric prediction for what thin sets we should remove in the PSTV-A conjecture in the spirit of Lehmann, Sengupta and Tanimoto's work for Manin's conjecture?

- Under what circumstances is the prediction for the constant from the PSTV-A conjecture correct, and how can we fix it in the cases where it isn't?
- Can we formulate a geometric prediction for what thin sets we should remove in the PSTV-A conjecture in the spirit of Lehmann, Sengupta and Tanimoto's work for Manin's conjecture?
- Is this just a feature of Campana orbifolds or can something similar happen with Peyre's constant for Manin's conjecture?