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Squareful numbers

Definition

A nonzero integer n is squareful if p|n =⇒ p2|n (example: 72 = 23 × 32).

Every nonzero squareful number n can be written uniquely in the form n = x2y 3,
for y ∈ Z6=0 square-free and x ∈ N. Therefore

#{n ≤ B : n squareful}

�
∑

|y|≤B1/3

y square-free

#{x ∈ N : x2y 3 ≤ B} �
∑

|y|≤B1/3

y square-free

(
B1/2

|y |3/2
+ O(1)

)
� B1/2.

Define

Nk(B) = #

{
z1, . . . , zk ∈ Z6=0 :

z1, . . . , zk squareful, |z1|, . . . , |zk | ≤ B,
gcd(z1, . . . , zk) = 1, z1 + · · ·+ zk = 0

}
.

Naive heuristic: Nk(B) � B
k
2
−1.
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Campana points

Campana points provide a way to interpolate between rational and integral points.

Let K be a field. A Campana orbifold is a pair (X ,D), where X is a smooth
variety over K and

D =
∑
α∈A

εαDα

is an effective Weil Q-divisor of X over K such that

1 For all α ∈ A, either εα = 1 or εα takes the form 1− 1/mα for some
mα ∈ Z≥2.

2 The support Dred =
∑

α∈ADα of D has strict normal crossings on X .

Fix a good integral model (X ,D) over OK ,S . The Campana points (X ,D)(OK ,S)
are K -rational points P ∈ X (K) such that for all α and all places v /∈ S , the
intersection multiplicity of P and Dα at v is either 0 or ≥ mα. (The intersection
multiplicity of P and Dα at v is the colength of the pullback of Dα via Pv as an
ideal in Ov .)

We have X ◦(OK ,S) ⊆ (X ,D)(OK ,S) ⊆ X (K).
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A Manin-type conjecture for Campana points

For an irreducible variety X over K , a subset A ⊂ X (K) is type I if A is a proper
closed subvariety of X , and type II if A = ϕ(V (K)), where V is an integral
projective variety with dim(V ) = dim(X ) and ϕ : V → X is a dominant morphism
of degree at least 2. A thin set of X (K) is a subset of a finite union of type I and
type II sets. A thin set of Campana OK ,S -points is the intersection of a thin set of
X (K) with the set of Campana points (X ,D)(OK ,S).

PSTV-A Conjecture (Pieropan, Smeets, Tanimoto, Várilly-Alvarado)

If (X ,D) is a Fano Campana orbifold, and H is a suitable height function, then there is
a thin set T such that

#{P ∈ (X ,D)(OK ,S)\T : H(P) ≤ B} ∼ cBa(logB)b−1.
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Example: Nk(B)

Let (X ,D) be a Campana orbifold, so D =
∑
α∈A(1− 1/mα)Dα for mα ∈ Z≥2.

Fix a good integral model (X ,D) over OK ,S . The Campana points (X ,D)(OK ,S)
are K -rational points P ∈ X (K) such that for all α and all places v /∈ S , the
intersection multiplicity of P and Dα at v is either 0 or ≥ mα.

Take the Campana orbifold (X ,D), where X = Pk−2
Q and D =

∑k
i=1

1
2
Di , with

Di =

{
{zi = 0}, if 1 ≤ i ≤ k − 1

{z1 + · · ·+ zk−1 = 0}, if i = k.

Choose a height H(z) = max(|z1|, . . . , |zk−1|, |z1 + · · ·+ zk−1|), for a
representative (z1, . . . , zk−1) ∈ Zk−1

prim of z ∈ Pk−2(Q).

The intersection multiplicities of z and D1, . . . ,Dk at p are respectively the p-adic
valuations of z1, . . . , zk−1, z1 + · · ·+ zk−1.

The PSTV-A conjecture predicts Nk(B) ∼ cB
k
2
−1 (after the potential removal of a

thin set).
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The PSTV-A conjecture

Nk(B) ∼ ckB
k
2
−1 for any k ≥ 5. (Van Valckenborgh, 2012)

For N3(B) (corresponding to X = P1
Q with divisor D = 1

2
[0] + 1

2
[1] + 1

2
[∞]), we

only have the bounds
cB1/2 ≤ N3(B)�ε B

3/5+ε.

(Browning, Van Valckenborgh, 2012)

Hyperplanes in Pn, with
∑

0≤i≤n+1
i 6=j

1
mi (mi+1)

≥ 1 for some j . (Browning, Yamagishi,

2018)

Vector group compactifications. (PSTV-A, 2019)

Split toric varieties via hyperbola method. (Pieropan, Schindler, 2020)

Biequivariant compactifications of the Heisenberg group. (Xiao, 2020)

Powerful values of norm forms. (Streeter, 2020)
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The case k = 4

N4(B) = #

{
z1, . . . , z4 ∈ Z 6=0 :

z1, . . . , z4 squareful, |z1|, . . . , |z4| ≤ B,
gcd(z1, . . . , z4) = 1, z1 + z2 + z3 + z4 = 0

}
.

In fact, N4(B)� B logB.

For a fixed y = (y1, . . . , y4) ∈ (Z 6=0)4, let

Ny(B) = #

x1, . . . , x4 ∈ Z6=0 :
y 3
1 x

2
1 + · · ·+ y 3

4 x
2
4 = 0,

gcd(y 3
1 x

2
1 , . . . , y

3
4 x

2
4 ) = 1,

|y 3
1 x

2
1 |, . . . , |y 3

4 x
2
4 | ≤ B

 .

Then
N4(B) =

∑
y∈(Z6=0)

4

y1,...,y4 square-free

Ny(B),

and

Ny(B) ∼

{
cyB, if y1 · · · y4 6= �,

cyB logB, if y1 · · · y4 = �.
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The main theorem

Define T = #

{
z1, . . . , z4 ∈ Z 6=0 :

z1, . . . , z4 squareful, gcd(z1, . . . , z4) = 1,
z1 + z2 + z3 + z4 = 0, z1 · · · z4 = �

}
.

Theorem (S., 2021)

The set T is a thin set of Campana points. After removing it, the count N4(B) becomes

N(B) = cB + Oε(B
734/735+ε)

for an explicit constant c > 0. The power of B and logB in the main term agree with
the PSTV-A conjecture.

N(B) =
∑

y∈(Z6=0)
4

y1,...,y4 square-free
y1···y4 6=�

Ny(B).

We need enough uniformity in our estimates for Ny(B) that we can take this sum over y.

For any a ∈ (Z 6=0)4, let N ′a(B) = #
{
x ∈ N4 :

∑4
i=1 aix

2
i = 0,max1≤i≤4 |aix2

i | ≤ B
}
.
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Sketch proof

Theorem (S., 2021)

Let a ∈ (Z 6=0)4 and define A = a1 · · · a4, ∆ =
∏4

i=1 gcd
(
ai ,
∏

j 6=i aj
)

. If A 6= � and

|A| ≤ B4/7, then

N ′a(B) =
Saσ∞(a)B

|A|1/2
+ Oε

(
B41/42+ε∆1/3

|A|11/24

)
.

The proof uses “A new form of the circle method, and its application to quadratic
forms” (Heath-Brown 1995).

N ′w,a(B) =
1 + ON(B−N)

B

∑
c∈Z4

∞∑
q=1

q−4Sq,a(c)Iq,a(c),

where w is a smooth weight approximating 1[−1,1]4 and

Sq,a(c) =
∑

k mod q
gcd(k,q)=1

∑
b mod q

eq

(
k

4∑
i=1

aib
2
i + b · c

)
,

Iq,a(c) =

∫
R4

w

(√
|a1|
B

x1, . . . ,

√
|a4|
B

x4

)
h

(
q

B1/2
,

∑4
i=1 aix

2
i

B

)
eq(−c · x)dx.
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The leading constant

c =
1

16

∑
y∈(Z6=0)

4

y1,...,y4 square-free
y1···y4 6=�

σ∞(y)

|y1 · · · y4|3/2
∏
p

lim
N→∞

(
MN(y, p)

p3N

)
,

where

Mn(y, p) = #

{
m (mod pn) :

4∑
i=1

y 3
i m

2
i ≡ 0 (mod pn), p - mjyj for some j

}
,

σ∞(y) =

∫ ∞
−∞

∫
[−1,1]4

e(−θ(sgn(y1)x2
1 + · · ·+ sgn(y4)x2

4 )) dx dθ.

The constant from the PSTV-A conjecture is

cPSTV-A =
1

16

∫
U(Q)ε

HD dτX

=
1

16
σ∞

∏
p

(1− p−1)σp.
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More thin sets

Let Qy be the quadric
∑4

i=1 y
3
i x

2
i = 0. Each cy contributes a positive proportion to

c, and corresponds to a thin set of Campana points.

ϕy : Qy → P2,

[x0 : x1 : x2 : x3] 7→ [y 3
0 x

2
0 : y 3

1 x
2
1 : y 3

2 x
2
2 ].

The image ϕy(Qy(Q)) is a type II thin set of P2(Q).

Let Ty = ϕy(Qy(Q)) ∩ (X ,D)(Z). Then

(X ,D)(Z) =
⊔

y∈(Z6=0)
4

y1,...,y4 square-free
y1···y4 6=�

Ty.

Therefore any constant in (0, c] could be obtained by the removal of an
appropriate thin set.
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Squareful values of binary forms

Take X = P1
Q, and let H be the height on X (Q) given by H([x : y ]) = max(|x |, |y |)

for (x , y) ∈ Z2
prim. Let D be the divisor 1

2
V (ax2 + by 2), where a ≡ b ≡ 1 (mod 4)

and µ2(ab) = 1. Consider the orbifold (X ,D) with the obvious good integral
model (X ,D) over Z. The corresponding counting problem is

N(B) =
1

2
#
{

(x , y) ∈ Z2
prim : |x |, |y | ≤ B, ax2 + by 2 squareful

}
.

Theorem (S., 2021)

The PSTV-A conjecture does not hold in the above setup when a = 37, b = 109.

cPSTV-A = R
∏
p-2ab

1 +
1 +

(
−ab
p

)
(1 + p−1)p3/2

 ,

c = R
∑
k|a

∑
l|b

∏
p-2ab

(b

k

)(a
l

)
+

(
bp
k

) (
ap
l

) (
1 +

(
−ab
p

))
(1 + p−1)p3/2

 .

When a = 37, b = 109, we have c < cPSTV-A and so thin sets cannot explain the
discrepancy between the constants.
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Questions

Under what circumstances is the prediction for the constant from the PSTV-A
conjecture correct, and how can we fix it in the cases where it isn’t?

Can we formulate a geometric prediction for what thin sets we should remove in
the PSTV-A conjecture in the spirit of Lehmann, Sengupta and Tanimoto’s work
for Manin’s conjecture?

Is this just a feature of Campana orbifolds or can something similar happen with
Peyre’s constant for Manin’s conjecture?
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