Distribution of Rational Points on Toric Varieties: A Multi-Height Approach

Arda H. Demirhan

University of Illinois at Chicago

March 19, 2021

Arda H. Demirhan Distribution of Rational Points on Toric Varieties: A Multi-Hei

• (1) • (2) • (3) • (3) • (3)

X: an algebraic variety in \mathbb{P}^n over a number field

Main Idea: We use height functions to count rational points.

・日・・ ヨ・・ モ・

X: an algebraic variety in \mathbb{P}^n over a number field

Main Idea: We use height functions to count rational points.

Height Machine associates counting devices to divisor classes.

 $\left\{\begin{array}{cc} \text{geometric facts} \\ \text{given by divisor relations} \end{array}\right\} \Leftrightarrow \left\{\begin{array}{cc} \text{arithmetic facts} \\ \text{given by height relations} \end{array}\right\}$

周 医 金属 医金属 医白白素

X: an algebraic variety in \mathbb{P}^n over a number field

Main Idea: We use height functions to count rational points.

Height Machine associates counting devices to divisor classes.

 $\left\{\begin{array}{c} \text{geometric facts} \\ \text{given by divisor relations} \end{array}\right\} \Leftrightarrow \left\{\begin{array}{c} \text{arithmetic facts} \\ \text{given by height relations} \end{array}\right\}$

Height Machine is useful for other fields too.

マボン マラン マラン 二日

Counting functions

Slogan: Geometry ~ Arithmetic

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

臣

Slogan: Geometry ~ Arithmetic

Counting Function:

$$N(U(K),B) = card\{x \in U(K) : H_K(x) \le B\}$$

Let $U \subseteq X$ be a Zariski open with some rational points.

Geometry shapes Arithmetic (for curves)

•
$$g = 0 \rightsquigarrow N(B) \approx cB^2$$

• $g = 1 \rightsquigarrow N(B) \approx c(\log(B)^{r/2})$
• $g > 1 \rightsquigarrow N(B) \approx c$

・ 回 ト ・ ヨ ト ・ ヨ ト …

Slogan: Geometry ~ Arithmetic

Counting Function:

$$N(U(K),B) = card\{x \in U(K) : H_K(x) \le B\}$$

Let $U \subseteq X$ be a Zariski open with some rational points.

Geometry shapes Arithmetic (for curves)

•
$$g = 0 \rightsquigarrow N(B) \approx cB^2$$

• $g = 1 \rightsquigarrow N(B) \approx c(\log(B)^{r/2})$
• $g > 1 \rightsquigarrow N(B) \approx c$

Another important geometric invariant is the canonical class.

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

X: Fano variety i.e. $-K_X$ is ample. Then

Conjecture

(Batryev-Manin) X: smooth projective variety. There is a finite extension F of k with X(F) Zariski dense in X. Moreover, for a small enough open set U

$$N(U(F), B) = CB(log(B))^{t-1}(1 + o(1))$$

as $B \to \infty$.

・ 同 ト ・ ヨ ト ・ ヨ ト

X: Fano variety i.e. $-K_X$ is ample. Then

Conjecture

(Batryev-Manin) X: smooth projective variety. There is a finite extension F of k with X(F) Zariski dense in X. Moreover, for a small enough open set U

$$N(U(F), B) = CB(log(B))^{t-1}(1 + o(1))$$

as $B \to \infty$.

This is unfortunately false in general:

★週 ▶ ★ 注 ▶ ★ 注 ▶

(Batyrev-Tschinkel) X_{n+2} : hypersurface in $\mathbb{P}^n \times \mathbb{P}^3$ given by $\ell_0(\underline{x})y_0^3 + \ell_1(\underline{x})y_1^3 + \ell_2(\underline{x})y_2^3 + \ell_3(\underline{x})y_3^3 = 0$

where n > 2

・ 回 ト ・ ヨ ト ・ ヨ ト …

크

(Batyrev-Tschinkel) X_{n+2} : hypersurface in $\mathbb{P}^n \times \mathbb{P}^3$ given by $\ell_0(\underline{x})y_0^3 + \ell_1(\underline{x})y_1^3 + \ell_2(\underline{x})y_2^3 + \ell_3(\underline{x})y_3^3 = 0$

where n > 2

• X_{n+2} : Smooth Fano variety

・ 同 ト ・ ヨ ト ・ ヨ ト

Э

(Batyrev-Tschinkel) X_{n+2} : hypersurface in $\mathbb{P}^n \times \mathbb{P}^3$ given by $\ell_0(\underline{x})y_0^3 + \ell_1(\underline{x})y_1^3 + \ell_2(\underline{x})y_2^3 + \ell_3(\underline{x})y_3^3 = 0$ where n > 2 X_{n+2} : Smooth Fano variety

・ 同 ト ・ ヨ ト ・ ヨ ト

Э

(Batyrev-Tschinkel) X_{n+2} : hypersurface in $\mathbb{P}^n \times \mathbb{P}^3$ given by $\ell_0(x)v_0^3 + \ell_1(x)v_1^3 + \ell_2(x)v_2^3 + \ell_3(x)v_3^3 = 0$ where n > 2**1** X_{n+2} : Smooth Fano variety **2** $\mathbb{A}^{n+2} \hookrightarrow X_{n+2}$ as a Zariski open set • Pic(X_{n+2}) $\cong \mathbb{Z}^2$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

(Batyrev-Tschinkel) X_{n+2} : hypersurface in $\mathbb{P}^n imes \mathbb{P}^3$ given by

$$\ell_0(\underline{x})y_0^3 + \ell_1(\underline{x})y_1^3 + \ell_2(\underline{x})y_2^3 + \ell_3(\underline{x})y_3^3 = 0$$

where n > 2

• X_{n+2} : Smooth Fano variety

• Pic
$$(X_{n+2}) \cong \mathbb{Z}^2$$

•
$$\mathbb{Q}(\sqrt{-3}) \subseteq k_0$$
 a number field

 $N(U(k_0), B) \ge cB(\log(B))^3$

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

크

Some Examples

MC is true for some classes of varieties including:

ヘロト 人間 とくほとくほとう

臣

Some Examples

MC is true for some classes of varieties including:

- Toric Varieties
- Some equivariant compactifications
- Flag varieties
- Smooth complete intersections of small degree

・ 回 ト ・ ヨ ト ・ ヨ ト ・

Accumulating Subvarieties

Let U be a countable set, $h_L : U \to \mathbb{R}_+$ a function such that its growth is finite for all bounds. Zeta function:

$$Z_U(L,s) = \sum_{x \in U} h_L(x)^{-s}$$

イロン 不同 とうほう 不同 とう

æ

Accumulating Subvarieties

Let U be a countable set, $h_L : U \to \mathbb{R}_+$ a function such that its growth is finite for all bounds. Zeta function:

$$Z_U(L,s) = \sum_{x \in U} h_L(x)^{-s}$$

Abscissa of Convergence:

 $\beta = \beta_U(L) := \inf \{ \sigma : Z_U(L, s) \text{ converges for } \Re s > \sigma \}$

★ 圖 ▶ ★ 温 ▶ ★ 温 ▶ … 温

Accumulating Subvarieties

Let U be a countable set, $h_L : U \to \mathbb{R}_+$ a function such that its growth is finite for all bounds. Zeta function:

$$Z_U(L,s) = \sum_{x \in U} h_L(x)^{-s}$$

Abscissa of Convergence:

 $\beta = \beta_U(L) := \inf \{ \sigma : Z_U(L, s) \text{ converges for } \Re s > \sigma \}$

The Connection with the growth function:

$$\beta = \limsup_{B \to \infty} \frac{\log \ N(L, U, B)}{\log \ B}$$

Accumulating subvarieties: $X \subset U$ is accumulating when

$$\beta_U(L) = \beta_X(L) > \beta_{U \setminus X}(L)$$

イロト イポト イヨト イヨト 二日

Blown up Projective Space

Blowing up \mathbb{P}^n along \mathbb{P}^m

• $0 \le m \le n-2$ and L_0 : linear subspace of \mathbb{P}^n defined by

Blown up Projective Space

Blowing up \mathbb{P}^n along \mathbb{P}^m

• $0 \le m \le n-2$ and L_0 : linear subspace of \mathbb{P}^n defined by

$$x_{m+1}=\cdots=x_n=0$$

• V: blow up of \mathbb{P}^n along L_0

イロン イヨン イヨン イヨン

= 990

• $0 \le m \le n-2$ and L_0 : linear subspace of \mathbb{P}^n defined by

$$x_{m+1}=\cdots=x_n=0$$

- V: blow up of \mathbb{P}^n along L_0
- Projections: $\pi_1: V \to \mathbb{P}^n$ and $\pi_2: V \to \mathbb{P}^{n-m-1}$

• $0 \le m \le n-2$ and L_0 : linear subspace of \mathbb{P}^n defined by

$$x_{m+1}=\cdots=x_n=0$$

- V: blow up of \mathbb{P}^n along L_0
- Projections: $\pi_1: V \to \mathbb{P}^n$ and $\pi_2: V \to \mathbb{P}^{n-m-1}$

The Exceptional divisor *E* and the hyperplane section *L* of π_1 satisfy:

イロト イポト イヨト イヨト

• $0 \le m \le n-2$ and L_0 : linear subspace of \mathbb{P}^n defined by

$$x_{m+1}=\cdots=x_n=0$$

- V: blow up of \mathbb{P}^n along L_0
- Projections: $\pi_1: V \to \mathbb{P}^n$ and $\pi_2: V \to \mathbb{P}^{n-m-1}$

The Exceptional divisor *E* and the hyperplane section *L* of π_1 satisfy:

• π_1 is an isomorphism away from *E*.

イロト イポト イヨト イヨト

• $0 \le m \le n-2$ and L_0 : linear subspace of \mathbb{P}^n defined by

$$x_{m+1}=\cdots=x_n=0$$

- V: blow up of \mathbb{P}^n along L_0
- Projections: $\pi_1: V \to \mathbb{P}^n$ and $\pi_2: V \to \mathbb{P}^{n-m-1}$

The Exceptional divisor *E* and the hyperplane section *L* of π_1 satisfy:

- **①** π_1 is an isomorphism away from *E*.
- **2** The Picard group of V, $Pic(V) = \mathbb{Z}[L] \oplus \mathbb{Z}[E]$.

イロト イポト イヨト イヨト

• $0 \le m \le n-2$ and L_0 : linear subspace of \mathbb{P}^n defined by

$$x_{m+1}=\cdots=x_n=0$$

- V: blow up of \mathbb{P}^n along L_0
- Projections: $\pi_1: V \to \mathbb{P}^n$ and $\pi_2: V \to \mathbb{P}^{n-m-1}$

The Exceptional divisor *E* and the hyperplane section *L* of π_1 satisfy:

- **①** π_1 is an isomorphism away from *E*.
- **2** The Picard group of V, $Pic(V) = \mathbb{Z}[L] \oplus \mathbb{Z}[E]$.
- The canonical class, $K_V = -(n+1)L + (n-m-1)E$.

• $0 \le m \le n-2$ and L_0 : linear subspace of \mathbb{P}^n defined by

$$x_{m+1}=\cdots=x_n=0$$

- V: blow up of \mathbb{P}^n along L_0
- Projections: $\pi_1: V \to \mathbb{P}^n$ and $\pi_2: V \to \mathbb{P}^{n-m-1}$

The Exceptional divisor *E* and the hyperplane section *L* of π_1 satisfy:

- **①** π_1 is an isomorphism away from *E*.
- **2** The Picard group of V, $Pic(V) = \mathbb{Z}[L] \oplus \mathbb{Z}[E]$.
- The canonical class, $K_V = -(n+1)L + (n-m-1)E$.
- Ample divisors D are of the form D = aL bE for a > b > 0.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Distribution of Rational Points on the Blown up Projective Space

Blowing up \mathbb{P}^n along \mathbb{P}^m

$$N(E(\mathbb{Q}), aL - bE, B) = \begin{cases} B^{(m+1)/(a-b)} & \text{if } \frac{m+1}{a-b} > \frac{n-m}{b} \\ B^{(m+1)/(a-b)} \log B & \text{if } \frac{m+1}{a-b} = \frac{n-m}{b} \\ B^{(n-m)/b} & \text{if } \frac{m+1}{a-b} < \frac{n-m}{b} \end{cases}$$
$$N(U(\mathbb{Q}), aL - bE, B) = \begin{cases} B^{(m+2)/(a-b)} & \text{if } \frac{n-m-1}{n+1} < \frac{b}{a} \\ B^{(n+1)/a} \log B & \text{if } \frac{n-m-1}{n+1} = \frac{b}{a} \\ B^{(n+1)/a} & \text{if } \frac{n-m-1}{n+1} > \frac{b}{a} \end{cases}$$

Distribution of Rational Points on the Blown up Projective Space

Blowing up \mathbb{P}^n along \mathbb{P}^m

$$N(E(\mathbb{Q}), aL - bE, B) = \begin{cases} B^{(m+1)/(a-b)} & \text{if } \frac{m+1}{a-b} > \frac{n-m}{b} \\ B^{(m+1)/(a-b)} \log B & \text{if } \frac{m+1}{a-b} = \frac{n-m}{b} \\ B^{(n-m)/b} & \text{if } \frac{m+1}{a-b} < \frac{n-m}{b} \end{cases}$$
$$N(U(\mathbb{Q}), aL - bE, B) = \begin{cases} B^{(m+2)/(a-b)} & \text{if } \frac{n-m-1}{n+1} < \frac{b}{a} \\ B^{(n+1)/a} \log B & \text{if } \frac{n-m-1}{n+1} = \frac{b}{a} \\ B^{(n+1)/a} & \text{if } \frac{n-m-1}{n+1} > \frac{b}{a} \end{cases}$$

 \therefore *E* is an accumulating subvariety for the anticanonical divisor.

Distribution of Rational Points on the Blown up Projective Space

Blowing up \mathbb{P}^n along \mathbb{P}^m

$$N(E(\mathbb{Q}), aL - bE, B) = \begin{cases} B^{(m+1)/(a-b)} & \text{if } \frac{m+1}{a-b} > \frac{n-m}{b} \\ B^{(m+1)/(a-b)} \log B & \text{if } \frac{m+1}{a-b} = \frac{n-m}{b} \\ B^{(n-m)/b} & \text{if } \frac{m+1}{a-b} < \frac{n-m}{b} \end{cases}$$
$$N(U(\mathbb{Q}), aL - bE, B) = \begin{cases} B^{(m+2)/(a-b)} & \text{if } \frac{n-m-1}{n+1} < \frac{b}{a} \\ B^{(n+1)/a} \log B & \text{if } \frac{n-m-1}{n+1} = \frac{b}{a} \\ B^{(n+1)/a} & \text{if } \frac{n-m-1}{n+1} > \frac{b}{a} \end{cases}$$

 $\therefore E$ is an accumulating subvariety for the anticanonical divisor. Corollary: The exceptional curve of the blowing up of \mathbb{P}^2 at a point is accumulating for the anticanonical divisor (3, 1).

Distribution of Rational Points on the Blown up Projective Space: A Few Remarks

The blow up of \mathbb{P}^n along \mathbb{P}^m is an example of a toric variety.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Distribution of Rational Points on the Blown up Projective Space: A Few Remarks

The blow up of \mathbb{P}^n along \mathbb{P}^m is an example of a toric variety.

We will show that the multi-height approach eliminates the role played by the accumulating subvarieties for toric varieties.

・ 同 ト ・ ヨ ト ・ ヨ ト

Distribution of Rational Points on the Blown up Projective Space: A Few Remarks

The blow up of \mathbb{P}^n along \mathbb{P}^m is an example of a toric variety.

We will show that the multi-height approach eliminates the role played by the accumulating subvarieties for toric varieties.

There are several approaches to the study of the distribution of rational points on toric varieties:

・ 同 ト ・ ヨ ト ・ ヨ ト

Distribution of Rational Points on the Blown up Projective Space: A Few Remarks

The blow up of \mathbb{P}^n along \mathbb{P}^m is an example of a toric variety.

We will show that the multi-height approach eliminates the role played by the accumulating subvarieties for toric varieties.

There are several approaches to the study of the distribution of rational points on toric varieties:

 Harmonic analysis by Batyrev and Tschinkel, and also by Strauch and Tschinkel,

(周) (日) (日)

Distribution of Rational Points on the Blown up Projective Space: A Few Remarks

The blow up of \mathbb{P}^n along \mathbb{P}^m is an example of a toric variety.

We will show that the multi-height approach eliminates the role played by the accumulating subvarieties for toric varieties.

There are several approaches to the study of the distribution of rational points on toric varieties:

- Harmonic analysis by Batyrev and Tschinkel, and also by Strauch and Tschinkel,
- 2 Universal torsors by Salberger, de la Bretèche, et al.

(日本)(日本)(日本)

Our method is based on harmonic analysis. The Idea:

・日・ ・ ヨ・ ・ ヨ・
Define a height pairing

回 とくほとくほど

- Define a height pairing
- 2 Define the Height Zeta function

回 とくほとくほど

- Define a height pairing
- 2 Define the Height Zeta function
- O Poisson formula

回 とくほとくほど

- Define a height pairing
- 2 Define the Height Zeta function
- O Poisson formula
- Ompute Fourier Transforms

• • = • • = •

- Define a height pairing
- 2 Define the Height Zeta function
- O Poisson formula
- Ompute Fourier Transforms
- **9** Get a meromorphic continuation

.

- Define a height pairing
- 2 Define the Height Zeta function
- O Poisson formula
- Ompute Fourier Transforms
- **9** Get a meromorphic continuation
- Tauberian Theorem

A B K A B K

Torus: A linear algebraic group T over a field K such that

 $\mathsf{T}_L \cong \mathbb{G}^d_{m,L}$

L: splitting field.

Torus: A linear algebraic group T over a field \boldsymbol{K} such that

 $\mathsf{T}_L \cong \mathbb{G}^d_{m,L}$

L: splitting field.

Split: $T \cong \mathbb{G}^{d}_{m,K}$

Torus: A linear algebraic group T over a field \boldsymbol{K} such that

 $\mathsf{T}_L \cong \mathbb{G}^d_{m,L}$

L: splitting field.

Split: $T \cong \mathbb{G}^{d}_{m,K}$ Characters: $\hat{T} := \operatorname{Hom}(T, \overline{K}^{*})$.

同ト・モート・モート

Torus: A linear algebraic group T over a field K such that

 $\mathsf{T}_L \cong \mathbb{G}^d_{m,L}$

L: splitting field.

Split: $T \cong \mathbb{G}^{d}_{m,K}$ Characters: $\hat{T} := \operatorname{Hom}(T, \overline{K}^{*})$. Duality:

algebraic tori defined over a number field K $\left\{ \begin{array}{c} \text{discrete and continuous}\\ \text{Gal}(\overline{K}/K) - \text{modules}\\ \text{of finite rank over } \mathbb{Z} \end{array} \right\}$

given by $T \mapsto \hat{T}$ and $M \mapsto T := Spec K[M]$

白 と く ヨ と く ヨ と

Torus: A linear algebraic group T over a field K such that

 $\mathsf{T}_L \cong \mathbb{G}^d_{m,L}$

L: splitting field.

Split: $T \cong \mathbb{G}^{d}_{m,K}$ Characters: $\hat{T} := \operatorname{Hom}(T, \overline{K}^{*})$. Duality:

algebraic tori defined over a number field K $\left\{ \begin{array}{c} \text{discrete and continuous}\\ Gal(\overline{K}/K) - modules\\ \text{of finite rank over }\mathbb{Z} \end{array} \right\}$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

given by $T \mapsto \hat{T}$ and $M \mapsto T := Spec K[M]$ Anisotropic: $rank(\hat{T}_K) = 0$

Torus: A linear algebraic group T over a field K such that

 $\mathsf{T}_L \cong \mathbb{G}^d_{m,L}$

L: splitting field.

Split: $T \cong \mathbb{G}^{d}_{m,K}$ Characters: $\hat{T} := \operatorname{Hom}(T, \overline{K}^{*})$. Duality:

algebraic tori defined over a number field K $\left\{ \begin{array}{c} \text{discrete and continuous}\\ \text{Gal}(\overline{K}/K) - \text{modules}\\ \text{of finite rank over } \mathbb{Z} \end{array} \right\}$

given by $T \mapsto \hat{T}$ and $M \mapsto T := Spec \ K[M]$ Anisotropic: $rank(\hat{T}_K) = 0$ e.g. An orthogonal group of a quadratic form non-vanishing $\neq \mathbb{Q}_{\mathbb{Q}}$

Fans and toric varieties

Split Tori

Data of a Fan:

 M - free abelian group of finite rank, N := Hom(M, Z) - the dual abelian group, N_R := N ⊗ R
 a fan Σ = {σ} is a finite collection of cones in N_R:

- $\bullet \ 0 \in \Sigma$
- $\forall \sigma \in \Sigma$, every face $\tau \subset \sigma$ is in Σ
- $\forall \sigma, \sigma' \in \Sigma, \sigma \cap \sigma' \in \Sigma$ and is a face of σ, σ'

同 と く ヨ と く ヨ と

Fans and toric varieties

Split Tori

Data of a Fan:

1 M - free abelian group of finite rank, $N := \operatorname{Hom}(M, \mathbb{Z})$ - the dual abelian group, $N_{\mathbb{R}} := N \otimes \mathbb{R}$ **2** a fan $\Sigma = \{\sigma\}$ is a finite collection of cones in $N_{\mathbb{R}}$: • $0 \in \Sigma$ • $\forall \sigma \in \Sigma$, every face $\tau \subset \sigma$ is in Σ • $\forall \sigma, \sigma' \in \Sigma, \sigma \cap \sigma' \in \Sigma$ and is a face of σ, σ' Complete Fans: $N_{\mathbb{R}} = \bigcup \sigma$ $\sigma \in \Sigma$ **Regular Fans:** if the generators of every $\sigma \in \Sigma$ form part of a basis of N.

同 と く ヨ と く ヨ と

Fans and toric varieties

Split Tori

Data of a Fan:

1 M - free abelian group of finite rank, $N := \operatorname{Hom}(M, \mathbb{Z})$ - the dual abelian group, $N_{\mathbb{R}} := N \otimes \mathbb{R}$ **2** a fan $\Sigma = \{\sigma\}$ is a finite collection of cones in $N_{\mathbb{R}}$: • $0 \in \Sigma$ • $\forall \sigma \in \Sigma$, every face $\tau \subset \sigma$ is in Σ • $\forall \sigma, \sigma' \in \Sigma, \sigma \cap \sigma' \in \Sigma$ and is a face of σ, σ' Complete Fans: $N_{\mathbb{R}} = \bigcup \sigma$ $\sigma \in \Sigma$ **Regular Fans:** if the generators of every $\sigma \in \Sigma$ form part of a basis of N.

Toric Varieties:

$$X_{\Sigma} := \bigcup_{\sigma \in \Sigma} U_{\sigma} \text{ where } U_{\sigma} := \operatorname{Spec}(\overline{K}[M \cap \check{\sigma}])$$

Toric Varieties: An Example and Properties

Example

Input: Σ : a d-dimensional fan with

1-dimensional cones generated by

 $e_1, \ldots, e_d, e_{d+1}$

where $e_{d+1} = -\sum e_i$.

2 *m*-dimensional cones generated by *m*-subsets of them. **Output:** The toric variety $X_{\Sigma} = \mathbb{P}^d$

Toric Varieties: An Example and Properties

Example

Input: Σ : a d-dimensional fan with

1-dimensional cones generated by

 e_1,\ldots,e_d,e_{d+1}

where $e_{d+1} = -\sum e_i$.

2 *m*-dimensional cones generated by *m*-subsets of them. **Output:** The toric variety $X_{\Sigma} = \mathbb{P}^d$

 1-dimensional generators e₁,..., e_n of Σ correspond to *T*-invariant boundary divisors D₁,..., D_n - irreducible components of X_Σ \ T

•
$$\Sigma$$
 regular $\Rightarrow X_{\Sigma}$ smooth.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Picard group and Heights

 $PL(\Sigma)$ - piecewise linear \mathbb{Z} -valued functions ϕ on Σ determined by $\{m_{\sigma,\phi}\}_{\sigma\in\Sigma}$, i.e., by its values $\phi(e_j)$, $j = 1, \ldots, n$.

$$0 \to M \to PL(\Sigma) \stackrel{\pi}{\longrightarrow} \operatorname{Pic}(X_{\Sigma}) \to 0$$

- every divisor is equivalent to a linear combination of boundary divisors D_1, \ldots, D_n , and ϕ is determined by its values on e_1, \ldots, e_n and these are denoted as s_j .
- relations come from characters of T

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Picard group and Heights

 $PL(\Sigma)$ - piecewise linear \mathbb{Z} -valued functions ϕ on Σ determined by $\{m_{\sigma,\phi}\}_{\sigma\in\Sigma}$, i.e., by its values $\phi(e_j)$, $j = 1, \ldots, n$.

$$0 \to M \to PL(\Sigma) \stackrel{\pi}{\longrightarrow} \operatorname{Pic}(X_{\Sigma}) \to 0$$

- every divisor is equivalent to a linear combination of boundary divisors D_1, \ldots, D_n , and ϕ is determined by its values on e_1, \ldots, e_n and these are denoted as s_j .
- relations come from characters of T
- Height functions: Global heights are product of local heights:
 - In Non-archimedean case:

$$H_{\Sigma,v}(x_v,\phi) = exp(\phi(\bar{x}_v)\log q_v)$$

2 Archimedean case:

$$H_{\Sigma,v}(x_v,\phi) = exp(\phi(\bar{x}_v))$$

Example

 $X = \mathbb{P}^1$, $\operatorname{Pic}^{\mathsf{T}}(\mathbb{P}^1) = <[0], [\infty] >, s = (2,3).$

Arda H. Demirhan Distribution of Rational Points on Toric Varieties: A Multi-Hei

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Example

$$X = \mathbb{P}^{1}, \ \mathrm{P}ic^{\mathsf{T}}(\mathbb{P}^{1}) = <[0], [\infty] >, \ \mathsf{s} = (2, 3).$$
$$H_{v}(x_{v}, \phi) = \begin{cases} (|\frac{x_{0}}{x_{1}}|_{v})^{2} & \text{if } |x_{0}|_{v} \ge |x_{1}|_{v} \\ (|\frac{x_{1}}{x_{0}}|_{v})^{3} & \text{otherwise} \end{cases}$$

イロト イヨト イヨト イヨト

臣

Example

$$X = \mathbb{P}^{1}, \operatorname{P}ic^{\mathsf{T}}(\mathbb{P}^{1}) = <[0], [\infty] >, s = (2, 3).$$
$$H_{v}(x_{v}, \phi) = \begin{cases} \left(|\frac{x_{0}}{x_{1}}|_{v}\right)^{2} & \text{if } |x_{0}|_{v} \ge |x_{1}|_{v} \\ \left(|\frac{x_{1}}{x_{0}}|_{v}\right)^{3} & \text{otherwise} \end{cases}$$
$$H(x) = \prod_{v} H_{v}(x)$$

イロト イヨト イヨト イヨト

臣

Height zeta function:

$$\mathcal{Z}_{\Sigma}(\phi) := \sum_{x \in \mathsf{T}(K)} H_{\Sigma}(x, \phi)^{-1}$$

Poisson Formula (Anisotropic T):

$$\begin{aligned} \mathcal{Z}_{\Sigma}(\phi) &= \frac{1}{b_{\mathcal{S}}(T)} \sum_{\chi \in (T(\mathbb{A}_{\mathcal{K}})/T(\mathcal{K}))^{*}} \hat{H}_{\Sigma}(\chi, -\phi) \\ \hat{H}_{\Sigma}(\chi, -\phi) &:= \int_{T(\mathbb{A}_{\mathcal{K}})} H_{\Sigma}(x, -\phi) \chi(x) \omega_{\Omega, S} \end{aligned}$$

イロン 不同 とうほう 不同 とう

크

Height zeta function:

$$\mathcal{Z}_{\Sigma}(\phi) := \sum_{x \in \mathsf{T}(K)} H_{\Sigma}(x,\phi)^{-1}$$

Poisson Formula (Anisotropic T):

$$\mathcal{Z}_{\Sigma}(\phi) = \frac{1}{b_{\mathcal{S}}(\mathcal{T})} \sum_{\chi \in (\mathcal{T}(\mathbb{A}_{\mathcal{K}})/\mathcal{T}(\mathcal{K}))^{*}} \hat{H}_{\Sigma}(\chi, -\phi)$$
$$\hat{H}_{\Sigma}(\chi, -\phi) := \int_{\mathcal{T}(\mathbb{A}_{\mathcal{K}})} H_{\Sigma}(x, -\phi) \chi(x) \omega_{\Omega, \mathcal{S}}$$

Proposition (Batryev and Tschinkel)

 $\mathcal{Z}_{\Sigma}(\phi)$

• Holomorphic for $\Re(s_j) > 1$

2 Has a meromorphic extension to the domain $\Re(s_j) > 1 - \delta$ with poles of order ≤ 1 along $s_j = 1$

Restricting $\mathcal{Z}_{\Sigma}(\phi)$ to $\mathcal{Z}_{\Sigma,L}(s) \rightsquigarrow$ verification of Manin's Conjecture for Toric Varieties by B and T.

• (1) • (2) • (3) • (3) • (4) • (

Restricting $\mathcal{Z}_{\Sigma}(\phi)$ to $\mathcal{Z}_{\Sigma,L}(s) \rightsquigarrow$ verification of Manin's Conjecture for Toric Varieties by B and T.

This theorem of B&T only uses a single metrized height function.

伺下 イヨト イヨト

Restricting $\mathcal{Z}_{\Sigma}(\phi)$ to $\mathcal{Z}_{\Sigma,L}(s) \rightsquigarrow$ verification of Manin's Conjecture for Toric Varieties by B and T.

This theorem of B&T only uses a single metrized height function.

Peyre in *Liberté et Accumulation* and *Beyond heights: slopes and distribution of rational points* provided two approaches:

Restricting $\mathcal{Z}_{\Sigma}(\phi)$ to $\mathcal{Z}_{\Sigma,L}(s) \rightsquigarrow$ verification of Manin's Conjecture for Toric Varieties by B and T.

This theorem of B&T only uses a single metrized height function.

Peyre in *Liberté et Accumulation* and *Beyond heights: slopes and distribution of rational points* provided two approaches:

- Freeness
- 2 All the Heights

Restricting $\mathcal{Z}_{\Sigma}(\phi)$ to $\mathcal{Z}_{\Sigma,L}(s) \rightsquigarrow$ verification of Manin's Conjecture for Toric Varieties by B and T.

This theorem of B&T only uses a single metrized height function.

Peyre in *Liberté et Accumulation* and *Beyond heights: slopes and distribution of rational points* provided two approaches:

- Freeness
- All the Heights

Why useful?

Restricting $\mathcal{Z}_{\Sigma}(\phi)$ to $\mathcal{Z}_{\Sigma,L}(s) \rightsquigarrow$ verification of Manin's Conjecture for Toric Varieties by B and T.

This theorem of B&T only uses a single metrized height function.

Peyre in *Liberté et Accumulation* and *Beyond heights: slopes and distribution of rational points* provided two approaches:

- Freeness
- 2 All the Heights

Why useful?

This may remove the influence of accumulating subvarieties in some cases.

A D D A D D A D D A D D A

Restricting $\mathcal{Z}_{\Sigma}(\phi)$ to $\mathcal{Z}_{\Sigma,L}(s) \rightsquigarrow$ verification of Manin's Conjecture for Toric Varieties by B and T.

This theorem of B&T only uses a single metrized height function.

Peyre in *Liberté et Accumulation* and *Beyond heights: slopes and distribution of rational points* provided two approaches:

- Freeness
- 2 All the Heights

Why useful?

This may remove the influence of accumulating subvarieties in some cases.

~ Apply Peyre's multiheights approach for toric varieties.

• (1) • (

Consider the behaviour of

$$N := card\{x \in X(K) : H_i(x) \le B^{\beta_i} \text{ for } i = 1, \dots, m\}$$

as $B \rightarrow \infty$ where H_i 's are metrized heights determined by T-invariant D_i 's yielding the ample divisor

$$\sum_{i} s_i D_i$$

Then we claim the following:

向下 イヨト イヨト

Consider the behaviour of

 $N := card\{x \in X(K) : H_i(x) \le B^{\beta_i} \text{ for } i = 1, \dots, m\}$

as $B \rightarrow \infty$ where H_i 's are metrized heights determined by T-invariant D_i 's yielding the ample divisor

$$\sum_{i} s_i D_i$$

Then we claim the following:

Main Theorem (Demirhan and Takloo-Bighash)

There are positive real constants P_{β} and θ such that

$$N = N(B^{\beta}) = B^{\beta_1 + \beta_2 + \ldots + \beta_m} (P_{\beta} + \mathcal{O}(B^{-\theta}))$$

as $B
ightarrow \infty$

It suffices to prove the theorem for X_{Δ} replaced by T.

< 回 > < 回 > < 回 >

It suffices to prove the theorem for X_{Δ} replaced by T.

Key point: Any T-invariant divisor is itself a toric variety with a fan that is completely explicitly determined from the fan of the original toric variety.

This allows us to do an inductive argument on the dimension of the toric variety.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ →

Sketch of the proof: Reduction Argument (cont.)

Consider

$$D_1 = T_1 \cup (D_1 \setminus T_1)$$

(日) (日) (日)
Consider

$$D_1 = T_1 \cup (D_1 \setminus T_1)$$

Replace the data

$$(X_{\Delta}, T_1, D_1 \dots, D_r)$$

with

・日・・ ヨ・・ モ・

Consider

$$D_1 = T_1 \cup (D_1 \setminus T_1)$$

Replace the data

$$(X_{\Delta}, T_1, D_1 \dots, D_r)$$

with

 $(D_1, T_1, D_2, \ldots, D_r)$

・ 同 ト ・ ヨ ト ・ ヨ ト

臣

Consider

$$D_1 = T_1 \cup (D_1 \setminus T_1)$$

Replace the data

$$(X_{\Delta}, T_1, D_1 \dots, D_r)$$

with

$$(D_1, T_1, D_2, \ldots, D_r)$$

Assume we show that

 $\left| \{ p \in T(F) : H_{D_1}(P) \le B^{a_1}, \dots, H_{D_r}(P) \le B^{a_r} \} \right| = CB^{a_1 + a_2 + \dots + a_r} + \mathcal{O}(B^{a_1 + a_2 + \dots + a_r - \epsilon})$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ○ � � �

Consider

$$D_1 = T_1 \cup (D_1 \setminus T_1)$$

Replace the data

$$(X_{\Delta}, T_1, D_1 \dots, D_r)$$

with

$$(D_1, T_1, D_2, \ldots, D_r)$$

Assume we show that

 $\left| \{ p \in T(F) : H_{D_1}(P) \le B^{a_1}, \dots, H_{D_r}(P) \le B^{a_r} \} \right| = CB^{a_1 + a_2 + \dots + a_r} + \mathcal{O}(B^{a_1 + a_2 + \dots + a_r - \epsilon})$

 $\sim \rightarrow$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ○ � � �

Consider

$$D_1 = T_1 \cup (D_1 \setminus T_1)$$

Replace the data

$$(X_{\Delta}, T_1, D_1 \dots, D_r)$$

with

 $(D_1, T_1, D_2, \ldots, D_r)$

Assume we show that

 $\left| \{ p \in T(F) : H_{D_1}(P) \le B^{a_1}, \dots, H_{D_r}(P) \le B^{a_r} \} \right| = CB^{a_1 + a_2 + \dots + a_r} + \mathcal{O}(B^{a_1 + a_2 + \dots + a_r - \epsilon})$

 $\sim \rightarrow$

$$\left| \{ p \in X_{\Delta} : H_{D_1}(P) \le B^{a_1}, \dots, H_{D_r}(P) \le B^{a_r} \} \right| = CB^{a_1 + a_2 + \dots + a_r} + \mathcal{O}(B^{a_1 + a_2 + \dots + a_r - \epsilon})$$

▲母▶▲臣▶▲臣▶ 臣 のへで

$$X_{\Delta} \setminus T = D_1 \cup \ldots \cup D_r$$

Arda H. Demirhan Distribution of Rational Points on Toric Varieties: A Multi-Hei

(1日) (1日) (日)

$$X_{\Delta} \setminus T = D_1 \cup \ldots \cup D_r$$

 $\left| \{ p \in D_1(F) : H_1(P) \le B^{a_1}, \dots, H_r(P) \le B^{a_r} \} \right| = \mathcal{O}(B^{a_1 + \dots + a_r - \epsilon})$

(本部) (문) (문) (문

$$X_{\Delta} \setminus T = D_1 \cup \ldots \cup D_r$$

 $\left| \{ p \in D_1(F) : H_1(P) \le B^{a_1}, \dots, H_r(P) \le B^{a_r} \} \right| = \mathcal{O}(B^{a_1 + \dots + a_r - \epsilon})$

 $\left| \{ p \in T_1(F) : H_2(P) \le B^{a_1}, \dots, H_r(P) \le B^{a_r} \} \right| = \mathcal{O}(B^{a_1 + \dots + a_r - \epsilon})$

$$X_{\Delta} \setminus T = D_1 \cup \ldots \cup D_r$$

$$\left|\{p \in D_1(F) : H_1(P) \le B^{a_1}, \dots, H_r(P) \le B^{a_r}\}\right| = \mathcal{O}(B^{a_1 + \dots + a_r - \epsilon})$$

$$\left| \{ p \in T_1(F) : H_2(P) \le B^{a_1}, \dots, H_r(P) \le B^{a_r} \} \right| = \mathcal{O}(B^{a_1 + \dots + a_r - \epsilon})$$

 \therefore The problem of counting is reduced to counting rational points in a general tori.

回 とう ヨン うちとう

We consider the arithmetic function f

$$f: \mathcal{C} \longrightarrow \mathbb{N}$$

 $(c_1, c_2, \dots, c_m) \longmapsto card\{x \in X(\mathcal{K}) : H_i(x) = c_i \text{ for each i, } 1 \le i \le m\}$

then define Multi Height Zeta Function

$$F(\mathbf{s}) := \sum_{c_1 \in C} \cdots \sum_{c_m \in C} \frac{f(c_1, \dots, c_m)}{c_1^{s_1} \dots c_m^{s_m}}$$
(1)

Then F satisfies nice properties:

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

 F(s) is absolutely convergent for ℜ(s) > 1 where 1 = (1,...,1)

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof.

•
$$F(s) \rightsquigarrow a$$
 sum of the terms $\frac{1}{\prod_{1 \le i \le m} H_i(x)^{s_i}}$ up to $\mathcal{O}(1)$

Proof.

•
$$F(s) \rightsquigarrow a$$
 sum of the terms $\frac{1}{\prod_{1 \le i \le m} H_i(x)^{s_i}}$ up to $\mathcal{O}(1)$
• $\frac{1}{\prod_{1 \le i \le m} H_i(x)^{s_i}} = \frac{1}{H_{\sum_{i=1}^m s_i D_i}(x)}$

•
$$F(s)$$
 is absolutely convergent for $\Re(s) > 1$ where $1 = (1, \dots, 1)$

Proof.

•
$$F(s) \rightsquigarrow a \text{ sum of the terms } \frac{1}{\prod_{1 \le i \le m} H_i(x)^{s_i}} \text{ up to } \mathcal{O}(1)$$

• $\frac{1}{\prod_{1 \le i \le m} H_i(x)^{s_i}} = \frac{1}{H_{\sum_{i=1}^m s_i D_i}(x)}$

D_i's are T-invariant divisors yielding a very ample divisor and s_i's are in Pic(X)_ℂ Taking the sum of both sides we obtain:

$$F(s) = Z_{\Sigma}(\phi)$$

•
$$F(s)$$
 is absolutely convergent for $\Re(s) > 1$ where $1 = (1, ..., 1)$

Proof.

•
$$F(s) \rightsquigarrow a \text{ sum of the terms } \frac{1}{\prod_{1 \le i \le m} H_i(x)^{s_i}} \text{ up to } \mathcal{O}(1)$$

• $\frac{1}{\prod_{1 \le i \le m} H_i(x)^{s_i}} = \frac{1}{H_{\sum_{i=1}^m s_i D_i}(x)}$

 D_i's are T-invariant divisors yielding a very ample divisor and s_i's are in Pic(X)_C Taking the sum of both sides we obtain:

$$F(s) = Z_{\Sigma}(\phi)$$

So F(s) is absolutely convergent for $\Re(s) > 1$.

• Consider
$$H(s) := F(s+1) \prod_{i=1}^{m} \pi^{(i)}(s)$$

・日・ ・ ヨ・ ・ ヨ・

2 Consider
$$H(s) := F(s+1) \prod_{i=1}^{m} \pi^{(i)}(s)$$
 where $\pi^{(i)}(s)$ is the coordinate function. Then $H(s)$ is holomorphic in the domain

・ 回 ト ・ ヨ ト ・ ヨ ト

2 Consider
$$H(s) := F(s+1) \prod_{i=1}^{m} \pi^{(i)}(s)$$
 where $\pi^{(i)}(s)$ is the coordinate function. Then $H(s)$ is holomorphic in the domain

$$\mathcal{D}(\delta) := \{ \mathsf{s} \in \mathbb{C}^m : \Re(\pi^{(i)}(\mathsf{s})) > -rac{1}{2m} \ \forall i \}$$

・ 回 ト ・ ヨ ト ・ ヨ ト

2 Consider
$$H(s) := F(s+1) \prod_{i=1}^{m} \pi^{(i)}(s)$$
 where $\pi^{(i)}(s)$ is the coordinate function. Then $H(s)$ is holomorphic in the domain

$$\mathcal{D}(\delta) := \{ \mathsf{s} \in \mathbb{C}^m : \Re(\pi^{(i)}(\mathsf{s})) > -rac{1}{2m} \;\; orall i \}$$

Proof.

 $F(s) = Z_{\Sigma}(\phi)$ and so by a Theorem in Batyrev and Tschinkel the claim follows.

イロン イヨン イヨン イヨン

2

③ For all $\epsilon, \epsilon' > 0$

(4回) (4回) (4回)

臣

• For all
$$\epsilon, \epsilon' > 0$$

$$|H(\mathbf{s})| = \mathcal{O}\left(\prod_{i=1}^{n} (|\Im(\pi^{(i)}(\mathbf{s})| + 1)^{1 - \frac{1}{3}\min(0, \Re(\pi^{(i)(\mathbf{s})}))}) * (1 + ||\Im(\mathbf{s})_{1}^{\epsilon}||)\right)$$

回 とう モン・ モン

③ For all
$$\epsilon, \epsilon' > 0$$

$$\begin{aligned} |H(\mathsf{s})| &= \\ \mathcal{O}\bigg(\prod_{i=1}^{n} (|\Im(\pi^{(i)}(\mathsf{s})| + 1)^{1 - \frac{1}{3}\min(0, \Re(\pi^{(i)(\mathsf{s})}))}) * (1 + ||\Im(\mathsf{s})_{1}^{\epsilon}||) \bigg) \end{aligned}$$

is uniformly valid in the region $D(1/2m - \epsilon')$ when Re(s) < 1

イロト イヨト イヨト イヨト 二日

In the anisotropic case the Poisson summation formula applied to the height zeta function gives a discrete sum over a lattice of characters.

向下 イヨト イヨト

In the anisotropic case the Poisson summation formula applied to the height zeta function gives a discrete sum over a lattice of characters.

The estimates in this case follow from standard bounds for *L*-functions and integration by parts as described in the paper Batyrev and Tschinkel on anisotropic tori.

・ 同 ト ・ ヨ ト ・ ヨ ト

A Tauberian Theorem of R. de la Bretèche

Theorem (R. de la Bretèche)

f: arithmetic function on \mathbb{N}^m , F: its Dirichlet Series:

$$F(\mathsf{s}) = \sum_{1 \leq d_1}^{\infty} \cdots \sum_{1 \leq d_m}^{\infty} \frac{f(d_1 \dots, d_m)}{d_1^{s_1} \dots d_m^{s_m}}$$

with the following properties:

• F(s) is absolutely convergent for s with $\Re(s) > \alpha$ where $\alpha \in (\mathbb{R}^+)^m$

A Tauberian Theorem of R. de la Bretèche

Theorem (R. de la Bretèche)

f: arithmetic function on \mathbb{N}^m , F: its Dirichlet Series:

$$F(\mathsf{s}) = \sum_{1 \leq d_1}^{\infty} \cdots \sum_{1 \leq d_m}^{\infty} rac{f(d_1 \dots, d_m)}{d_1^{s_1} \dots d_m^{s_m}}$$

with the following properties:

- F(s) is absolutely convergent for s with ℜ(s) > α where α ∈ (ℝ⁺)^m
- ② There exists a family *L* of non trivial linear forms *l_i* where 1 ≤ *i* ≤ *n* and another finite such family *h^r* (not necessarily non-trivial) in *L*ℝ⁺_m(ℂ) such that

$$H(\mathbf{s}) := F(\mathbf{s} + \alpha) \prod_{i=1}^{n} \ell^{(i)}(\mathbf{s})$$

A Tauberian Theorem of R. de la Bretèche (cont.)

Theorem (R. de la Bretèche) cont.

can be extended to a holomorphic function in the domain

 $\mathcal{D}(\delta_1, \delta_3) := \{\mathsf{s} \in \mathbb{C}^m : \Re(\ell^{(i)}(\mathsf{s})) > -\delta_1, \Re(h^{(r)(\mathsf{s})}) > -\delta_3 \,\,\forall i, r\}$

for some $\delta_1, \delta_3 > 0$

A Tauberian Theorem of R. de la Bretèche (cont.)

Theorem (R. de la Bretèche) cont.

can be extended to a holomorphic function in the domain

$$\mathcal{D}(\delta_1, \delta_3) := \{\mathsf{s} \in \mathbb{C}^m : \Re(\ell^{(i)}(\mathsf{s})) > -\delta_1, \Re(h^{(r)(\mathsf{s})}) > -\delta_3 \ \forall i, r\}$$

for some $\delta_1, \delta_3 > 0$

O There exists a δ₂ > 0 such that for all ε, ε' > 0 the following is satisfied in D(δ₁ − ε', δ₃ − ε'):

A Tauberian Theorem of R. de la Bretèche (cont.)

Theorem (R. de la Bretèche) cont.

can be extended to a holomorphic function in the domain

$$\mathcal{D}(\delta_1,\delta_3) := \{\mathsf{s} \in \mathbb{C}^m : \Re(\ell^{(i)}(\mathsf{s})) > -\delta_1, \Re(h^{(r)(\mathsf{s})}) > -\delta_3 \; orall i, r\}$$

for some $\delta_1, \delta_3 > 0$

O There exists a δ₂ > 0 such that for all ε, ε' > 0 the following is satisfied in D(δ₁ - ε', δ₃ - ε'):

$$|H(\mathsf{s})| = \mathcal{O}\left(\prod_{i=1}^{n} \left(|\Im(\ell^{i}(\mathsf{s}))|+1\right)^{1-\delta_{2}\min(0,\Re(\ell^{i}(\mathsf{s})))} \left(1+||\Im(\mathsf{s})||_{1}^{\epsilon}\right)\right)$$

Theorem (R. de la Bretèche) cont.

can be extended to a holomorphic function in the domain

$$\mathcal{D}(\delta_1,\delta_3) := \{\mathsf{s} \in \mathbb{C}^m : \Re(\ell^{(i)}(\mathsf{s})) > -\delta_1, \Re(h^{(r)(\mathsf{s})}) > -\delta_3 \ \forall i,r\}$$

for some $\delta_1, \delta_3 > 0$

O There exists a δ₂ > 0 such that for all ε, ε' > 0 the following is satisfied in D(δ₁ − ε', δ₃ − ε'):

$$|\mathsf{H}(\mathsf{s})| = \mathcal{O}\bigg(\prod_{i=1}^n \big(|\Im(\ell^i(\mathsf{s}))| + 1\big)^{1 - \delta_2 \min(0, \Re(\ell^i(\mathsf{s})))} \Big(1 + \|\Im(\mathsf{s})\|_1^\epsilon\Big)\bigg)$$

Then

$$\sum_{d_1 \leq X^{\beta_1}} \cdots \sum_{d_m \leq X^{\beta_m}} f(d_1 \dots, d_m) = X^{<\alpha,\beta>} \big(Q_\beta(\log X) + \mathcal{O}(X^{-\theta}) \big)$$

where $Q_{\beta} \in \mathbb{R}[X]$ and $\theta > 0$

Definition

 $E := \mathbb{R}^p$, $E_{\mathbb{C}}$: its complexification, V: a subspace in E. A non-negative real valued function c on V is called **sufficient** if

● For any subspace U ⊂ V and v ∈ V, the function U → ℝ defined by u → c(v + u) is measurable on U and

$$c_U(v) := \int_U c(v+u) du$$

is finite.

② For any subspace $U \subset V$ and for each $v \in V \setminus U$ we have

$$\lim_{\tau \to \pm \infty} c_U(\tau \cdot v) = 0$$

イロト イポト イヨト イヨト

Technical Set up: Distinguished Functions

 ℓ_1, \ldots, ℓ_m : linearly independent linear forms on E, B: convex and open neighborhood of $0 = (0, \ldots, 0)$ in E such that $\ell_j(x) > -1$, $T_B := B + iE$, $f \in \mathcal{M}(T_B)$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Technical Set up: Distinguished Functions

 ℓ_1, \ldots, ℓ_m : linearly independent linear forms on E, B: convex and open neighborhood of $0 = (0, \ldots, 0)$ in E such that $\ell_j(x) > -1$, $T_B := B + iE$, $f \in \mathcal{M}(T_B)$

Definition

f is called as **distinguished** with respect to the data consisting of V and linearly independent linear forms ℓ_1, \ldots, ℓ_m if it satisfies

The function

$$g(\mathsf{s}) := f(\mathsf{s}) \prod_{j=1}^m rac{\ell_j(\mathsf{s})}{\ell_j(\mathsf{s}) + 1}$$

is holomorphic in T_B .

Por some c for all compact subsets K ⊂ T_B, there is a constant κ with

$$|g(s+iv)| \leq \kappa c(v)$$

A Crucial Property of Distinguished Functions

Let C be a connected component of $B \setminus \bigcup Ker(\ell_j)$. On T_C define:

・ 回 ト ・ ヨ ト ・ ヨ ト …

A Crucial Property of Distinguished Functions

Let C be a connected component of $B \setminus \bigcup Ker(\ell_j)$. On T_C define:

$$\tilde{f}_C(\mathsf{s}) := \frac{1}{(2\pi)^d} \int_V f(\mathsf{s} + i\mathsf{v}) d\mathsf{v}$$

Proposition (Strauch and Tschinkel)

Let f be distinguished function w.r.t some data. Then

- $\tilde{f}_C : T_C \to \mathbb{C}$ is holomorphic.
- **2** There is an open and convex neighborhood \tilde{B} of 0 = (0, ..., 0), containing C, and linear forms $\tilde{\ell}_i$ $(1 \le i \le \tilde{m})$ vanishing on V such that

$$s\mapsto \widetilde{f}_C(s)\prod_{j=1}^{\widetilde{m}}\widetilde{\ell}_j(s)$$

has a holomorphic continuation to $T_{\tilde{B}}$

Anisotropic Case \rightsquigarrow Base Case.

・ 回 ト ・ ヨ ト ・ ヨ ト
Anisotropic Case \rightsquigarrow Base Case.

General Case:
Consider:
$$\tilde{f}_C(s) := \frac{1}{(2\pi)^d} \int_V f(s + iv) dv$$
 where $d = dim V$

・日・・ キャ・・ キャ

Anisotropic Case \rightsquigarrow Base Case.

General Case:
Consider:
$$\tilde{f}_C(s) := \frac{1}{(2\pi)^d} \int_V f(s + iv) dv$$
 where $d = dim V$

By using the method of Strauch and Tschinkel (1999), we do Induction on d.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- V. Batyrev and Yu. Tschinkel, *Manin's conjecture for toric varieties*, Journ. of Alg. Geometry **7**, 1998.
- V. Batyrev and Yu. Tschinkel, *Rational points of bounded height on compactifications of anisotropic tori*, IMRN, 1995.
- R. de la Bretèche, *Compter des points d'une variete torique*, 2000.
- R. de la Bretèche, Estimation de sommes multiples de fonctions arithmetiques, 1998.
- D. Cox, J. Little, and H. Schenck *Toric Varieties*, 2010.
- W. Fulton, *Introduction to toric varieties*, Ann. of Math. Studies **131**, Princeton Univ. Press, 1993.

References (cont.)

- E. Peyre, *Beyond heights: slopes and distribution of rational points*, dans Arakelov geometry and diophantine applications, Lecture Notes in Mathematics 2276 (2020), 1-67.
- E. Peyre, Liberté et accumulation, Documenta Math. 22 (2017), 1615-1659.
- J-P Serre, *Lectures on the Mordell-Weil theorem*, translated from the French and edited by Martin Brown from notes by Michel Waldschmidt. With a foreword by Brown and Serre. Third edition. Aspects of Mathematics. Friedr Vieweg and Sohn, Braunschweig, 1997. x+218 pp.
- M. Strauch, Yu. Tschinkel, Height zeta functions of toric bundles over flag varieties, Selecta Math. (N.S.) 5 (1999), no. 3, p. 325-396.
- G. Tenenbaum, *Introduction à la théorie analytique et probabiliste des nombres*, 2ème éd., Cours Spécialisés, No. 1, Société Mathématique de France, 1995.

イロン 不同 とうほう 不同 とう