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How to Count Rational Points?

X: an algebraic variety in Pn over a number field

Main Idea: We use height functions to count rational points.

Height Machine associates counting devices to divisor classes.{
geometric facts

given by divisor relations

}
⇔

{
arithmetic facts

given by height relations

}

Height Machine is useful for other fields too.
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Counting functions

Slogan: Geometry  Arithmetic

Counting Function:

N(U(K ),B) = card{x ∈ U(K ) : HK (x) ≤ B}

Let U ⊆ X be a Zariski open with some rational points.

Geometry shapes Arithmetic (for curves)

g = 0 N(B) ≈ cB2

g = 1 N(B) ≈ c(log(B)r/2)

g > 1 N(B) ≈ c

Another important geometric invariant is the canonical class.
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Manin’s Conjecture

X: Fano variety i.e. −KX is ample. Then

Conjecture

(Batryev-Manin) X: smooth projective variety. There is a finite
extension F of k with X (F ) Zariski dense in X . Moreover, for a
small enough open set U

N(U(F ),B) = CB(log(B))t−1(1 + o(1))

as B →∞.

This is unfortunately false in general:
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A Counter-Example

Example

(Batyrev-Tschinkel) Xn+2: hypersurface in Pn × P3 given by

`0(x)y3
0 + `1(x)y3

1 + `2(x)y3
2 + `3(x)y3

3 = 0

where n > 2

1 Xn+2: Smooth Fano variety

2 An+2 ↪→ Xn+2 as a Zariski open set

3 Pic(Xn+2) ∼= Z2

4 Q(
√
−3) ⊆ k0 a number field

N(U(k0),B) ≥ cB(log(B))3
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Some Good News

Some Examples

MC is true for some classes of varieties including:

Toric Varieties

Some equivariant compactifications

Flag varieties

Smooth complete intersections of small degree
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Accumulating Subvarieties

Let U be a countable set, hL : U → R+ a function such that its
growth is finite for all bounds.
Zeta function:

ZU(L, s) =
∑
x∈U

hL(x)−s

Abscissa of Convergence:
β = βU(L) := inf {σ : ZU(L, s) converges for <s > σ}
The Connection with the growth function:

β = lim sup
B→∞

log N(L,U,B)

log B

Accumulating subvarieties: X ⊂ U is accumulating when

βU(L) = βX (L) > βU\X (L)
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Blown up Projective Space

Blowing up Pn along Pm

0 ≤ m ≤ n − 2 and L0: linear subspace of Pn defined by

xm+1 = · · · = xn = 0

V : blow up of Pn along L0

Projections: π1 : V → Pn and π2 : V → Pn−m−1

The Exceptional divisor E and the hyperplane section L of π1

satisfy:

1 π1 is an isomorphism away from E .

2 The Picard group of V , Pic(V ) = Z[L]⊕ Z[E ].

3 The canonical class, KV = −(n + 1)L + (n −m − 1)E .

4 Ample divisors D are of the form D = aL− bE for a > b > 0.
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Distribution of Rational Points on the Blown up Projective
Space

Blowing up Pn along Pm

N(E (Q), aL−bE ,B) =


B(m+1)/(a−b) if m+1

a−b > n−m
b

B(m+1)/(a−b) logB if m+1
a−b = n−m

b

B(n−m)/b if m+1
a−b < n−m

b

N(U(Q), aL− bE ,B) =


B(m+2)/(a−b) if n−m−1

n+1 < b
a

B(n+1)/a logB if n−m−1
n+1 = b

a

B(n+1)/a if n−m−1
n+1 > b

a

∴ E is an accumulating subvariety for the anticanonical divisor.

Corollary: The exceptional curve of the blowing up of P2 at a point
is accumulating for the anticanonical divisor (3, 1).
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Distribution of Rational Points on the Blown up Projective
Space: A Few Remarks

The blow up of Pn along Pm is an example of a toric variety.

We will show that the multi-height approach eliminates the role
played by the accumulating subvarieties for toric varieties.

There are several approaches to the study of the distribution of
rational points on toric varieties:

1 Harmonic analysis by Batyrev and Tschinkel, and also by
Strauch and Tschinkel,

2 Universal torsors by Salberger, de la Bretèche, et al.
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A Brief Roadmap to use Harmonic Analysis

Our method is based on harmonic analysis.
The Idea:

1 Define a height pairing

2 Define the Height Zeta function

3 Poisson formula

4 Compute Fourier Transforms

5 Get a meromorphic continuation

6 Tauberian Theorem
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Algebraic torus

Torus: A linear algebraic group T over a field K such that

TL
∼= Gd

m,L

L: splitting field.

Split: T ∼= Gd
m,K

Characters: T̂ := Hom(T,K
∗
).

Duality:{
algebraic tori

defined over a number field K

}
←→


discrete and continuous

Gal(K/K )−modules

of finite rank over Z


given by T 7→ T̂ and M 7→ T := Spec K [M]

Anisotropic: rank(T̂K ) = 0
e.g. An orthogonal group of a quadratic form non-vanishing / Q.
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e.g. An orthogonal group of a quadratic form non-vanishing / Q.
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Fans and toric varieties

Split Tori
Data of a Fan:

1 M - free abelian group of finite rank,
N := Hom(M,Z) - the dual abelian group,
NR := N ⊗ R

2 a fan Σ = {σ} is a finite collection of cones in NR:
0 ∈ Σ
∀σ ∈ Σ, every face τ ⊂ σ is in Σ
∀σ, σ′ ∈ Σ, σ ∩ σ′ ∈ Σ and is a face of σ, σ′

Complete Fans: NR =
⋃
σ∈Σ

σ

Regular Fans: if the generators of every σ ∈ Σ form part of a basis
of N.
Toric Varieties:

XΣ :=
⋃
σ∈Σ

Uσ where Uσ := Spec(K [M ∩ σ̌])
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Toric Varieties: An Example and Properties

Example

Input: Σ: a d-dimensional fan with

1 1-dimensional cones generated by

e1, . . . , ed , ed+1

where ed+1 = −
∑

ei .

2 m-dimensional cones generated by m-subsets of them.
Output: The toric variety XΣ=Pd

1-dimensional generators e1, . . . , en of Σ correspond to
T -invariant boundary divisors D1, . . . ,Dn - irreducible
components of XΣ \ T

Σ regular ⇒ XΣ smooth.
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Picard group and Heights

PL(Σ) - piecewise linear Z-valued functions φ on Σ
determined by {mσ,φ}σ∈Σ, i.e., by its values φ(ej), j = 1, . . . , n.

0→ M → PL(Σ)
π−→ Pic(XΣ)→ 0

every divisor is equivalent to a linear combination of boundary
divisors D1, . . . ,Dn, and φ is determined by its values on
e1, . . . , en and these are denoted as sj .

relations come from characters of T

Height functions: Global heights are product of local heights:
1 Non-archimedean case:

HΣ,v (xv , φ) = exp(φ(x̄v ) log qv )

2 Archimedean case:

HΣ,v (xv , φ) = exp(φ(x̄v ))
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An Example Height Computation

Example

X = P1, PicT(P1) =< [0], [∞] >, s = (2, 3).

Hv (xv , φ) =

{
(| x0

x1
|v )2 if |x0|v ≥ |x1|v

(| x1
x0
|v )3 otherwise

H(x) =
∏
v

Hv (x)
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Zeta Functions of the Complexified Height and their Analytic Properties

Height zeta function:

ZΣ(φ) :=
∑

x∈T(K)

HΣ(x , φ)−1

Poisson Formula (Anisotropic T ):

ZΣ(φ) =
1

bS(T )

∑
χ∈(T (AK )/T (K))∗

ĤΣ(χ,−φ)

ĤΣ(χ,−φ) :=

∫
T(AK )

HΣ(x ,−φ)χ(x)ωΩ,S

Proposition (Batryev and Tschinkel)

ZΣ(φ)

1 Holomorphic for <(sj) > 1

2 Has a meromorphic extension to the domain <(sj) > 1− δ
with poles of order ≤ 1 along sj = 1
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Multi-Height Variant of the Batryev-Tschinkel Theorem

Restricting ZΣ(φ) to ZΣ,L(s)  verification of Manin’s Conjecture
for Toric Varieties by B and T.

This theorem of B&T only uses a single metrized height function.

Peyre in Liberté et Accumulation and Beyond heights: slopes and
distribution of rational points provided two approaches:

1 Freeness

2 All the Heights

Why useful?
This may remove the influence of accumulating subvarieties in
some cases.

 Apply Peyre’s multiheights approach for toric varieties.
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Multi-Height Variant of the Batryev-Tschinkel Theorem II

Consider the behaviour of

N := card{x ∈ X (K ) : Hi (x) ≤ Bβi for i = 1, . . . ,m}

as B →∞ where Hi ’s are metrized heights determined by
T-invariant Di ’s yielding the ample divisor∑

i

siDi

Then we claim the following:

Main Theorem (Demirhan and Takloo-Bighash)

There are positive real constants Pβ and θ such that

N = N(Bβ) = Bβ1+β2+...+βm
(
Pβ +O(B−θ)

)
as B →∞
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Sketch of the proof: Reduction Argument

It suffices to prove the theorem for X∆ replaced by T .

Key point: Any T -invariant divisor is itself a toric variety with a
fan that is completely explicitly determined from the fan of the
original toric variety.

This allows us to do an inductive argument on the dimension of
the toric variety.
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Sketch of the proof: Reduction Argument (cont.)

Consider
D1 = T1 ∪ (D1 \ T1)

Replace the data
(X∆,T1,D1 . . . ,Dr )

with
(D1,T1,D2, . . . ,Dr )

Assume we show that

∣∣{p ∈ T (F ) : HD1(P) ≤ Ba1 , . . . ,HDr (P) ≤ Bar }
∣∣ = CBa1+a2+...+ar +O(Ba1+a2+...+ar−ε)

 ∣∣{p ∈ X∆ : HD1(P) ≤ Ba1 , . . . ,HDr (P) ≤ Bar }
∣∣ = CBa1+a2+...+ar +O(Ba1+a2+...+ar−ε)
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Sketch of the proof: Reduction Argument (cont.)

X∆ \ T = D1 ∪ . . . ∪ Dr

∣∣{p ∈ D1(F ) : H1(P) ≤ Ba1 , . . .Hr (P) ≤ Bar }
∣∣ = O(Ba1+...+ar−ε)

∣∣{p ∈ T1(F ) : H2(P) ≤ Ba1 , . . .Hr (P) ≤ Bar }
∣∣ = O(Ba1+...+ar−ε)

∴ The problem of counting is reduced to counting rational points
in a general tori.
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Sketch of the proof: Anisotropic Case

We consider the arithmetic function f

f : C −→ N

(c1, c2, . . . , cm) 7−→ card{x ∈ X (K ) : Hi (x) = ci for each i, 1 ≤ i ≤ m}

then define
Multi Height Zeta Function

F (s) :=
∑
c1∈C
· · ·

∑
cm∈C

f (c1, . . . , cm)

cs1
1 . . . csmm

(1)

Then F satisfies nice properties:
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Sketch of the proof: Anisotropic Case (cont.)

1 F (s) is absolutely convergent for <(s) > 1 where
1 = (1, . . . , 1)

Proof.

F (s)  a sum of the terms 1∏
1≤i≤m Hi (x)si up to O(1)

1∏
1≤i≤m Hi (x)si

=
1

H∑m
i=1 siDi

(
x
)

Di ’s are T-invariant divisors yielding a very ample divisor and
si ’s are in Pic(X )C Taking the sum of both sides we obtain:

F (s) = ZΣ(φ)

So F (s) is absolutely convergent for <(s) > 1.
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Sketch of the proof: Anisotropic Case (cont.)

1 F (s) is absolutely convergent for <(s) > 1 where
1 = (1, . . . , 1)

Proof.

F (s)  a sum of the terms 1∏
1≤i≤m Hi (x)si up to O(1)

1∏
1≤i≤m Hi (x)si

=
1

H∑m
i=1 siDi

(
x
)

Di ’s are T-invariant divisors yielding a very ample divisor and
si ’s are in Pic(X )C Taking the sum of both sides we obtain:

F (s) = ZΣ(φ)

So F (s) is absolutely convergent for <(s) > 1.

Arda H. Demirhan Distribution of Rational Points on Toric Varieties: A Multi-Height Approach



Sketch of the proof: Anisotropic Case (cont.)

1 F (s) is absolutely convergent for <(s) > 1 where
1 = (1, . . . , 1)

Proof.

F (s)  a sum of the terms 1∏
1≤i≤m Hi (x)si up to O(1)

1∏
1≤i≤m Hi (x)si

=
1

H∑m
i=1 siDi

(
x
)

Di ’s are T-invariant divisors yielding a very ample divisor and
si ’s are in Pic(X )C Taking the sum of both sides we obtain:

F (s) = ZΣ(φ)

So F (s) is absolutely convergent for <(s) > 1.

Arda H. Demirhan Distribution of Rational Points on Toric Varieties: A Multi-Height Approach
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Sketch of the proof: Anisotropic Case (cont.)

2 Consider H(s) := F (s + 1)
m∏
i=1

π(i)(s)

where π(i)(s) is the

coordinate function. Then H(s) is holomorphic in the domain

D(δ) := {s ∈ Cm : <(π(i)(s)) > − 1

2m
∀i}

Proof.

F (s) = ZΣ(φ) and so by a Theorem in Batyrev and Tschinkel the
claim follows.
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Sketch of the proof: Anisotropic Case (cont.)

3 For all ε, ε′ > 0

|H(s)| =

O
( n∏

i=1

(|=(π(i)(s)|+ 1)1− 1
3
min(0,<(π(i)(s)))) ∗

(
1 + ||=(s)ε1||

))
is uniformly valid in the region D(1/2m − ε′) when Re(s) < 1
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Sketch of the proof: Anisotropic Case (cont.)
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Sketch of the proof: Anisotropic Case (cont.)

In the anisotropic case the Poisson summation formula applied to
the height zeta function gives a discrete sum over a lattice of
characters.

The estimates in this case follow from standard bounds for
L-functions and integration by parts as described in the paper
Batyrev and Tschinkel on anisotropic tori.
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A Tauberian Theorem of R. de la Bretèche

Theorem (R. de la Bretèche)

f : arithmetic function on Nm, F : its Dirichlet Series:

F (s) =
∞∑

1≤d1

· · ·
∞∑

1≤dm

f (d1 . . . , dm)

d s1
1 . . . d sm

m

with the following properties:

1 F (s) is absolutely convergent for s with <(s) > α where
α ∈ (R+)m

2 There exists a family L of non trivial linear forms `i where
1 ≤ i ≤ n and another finite such family hr (not necessarily
non-trivial ) in LR+

m(C) such that

H(s) := F (s + α)
n∏

i=1

`(i)(s)
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A Tauberian Theorem of R. de la Bretèche (cont.)

Theorem (R. de la Bretèche) cont.

can be extended to a holomorphic function in the domain

D(δ1, δ3) := {s ∈ Cm : <(`(i)(s)) > −δ1,<(h(r)(s)) > −δ3 ∀i , r}

for some δ1, δ3 > 0

3 There exists a δ2 > 0 such that for all ε, ε′ > 0 the following is
satisfied in D(δ1 − ε′, δ3 − ε′):

|H(s)| = O
( n∏

i=1

(
|=(`i (s))|+1

)1−δ2min(0,<(`i (s)))
(

1+‖=(s)‖ε1
))

Then∑
d1≤Xβ1

· · ·
∑

dm≤Xβm

f (d1 . . . , dm) = X<α,β>
(
Qβ(log X ) +O(X−θ)

)
where Qβ ∈ R[X ] and θ > 0
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can be extended to a holomorphic function in the domain

D(δ1, δ3) := {s ∈ Cm : <(`(i)(s)) > −δ1,<(h(r)(s)) > −δ3 ∀i , r}

for some δ1, δ3 > 0

3 There exists a δ2 > 0 such that for all ε, ε′ > 0 the following is
satisfied in D(δ1 − ε′, δ3 − ε′):

|H(s)| = O
( n∏

i=1

(
|=(`i (s))|+1

)1−δ2min(0,<(`i (s)))
(

1+‖=(s)‖ε1
))

Then∑
d1≤Xβ1

· · ·
∑

dm≤Xβm

f (d1 . . . , dm) = X<α,β>
(
Qβ(log X ) +O(X−θ)

)
where Qβ ∈ R[X ] and θ > 0

Arda H. Demirhan Distribution of Rational Points on Toric Varieties: A Multi-Height Approach



A Tauberian Theorem of R. de la Bretèche (cont.)
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Technical Set up: Sufficient Functions

Definition

E := Rp, EC: its complexification, V : a subspace in E . A
non-negative real valued function c on V is called sufficient if

1 For any subspace U ⊂ V and v ∈ V , the function U → R
defined by u 7→ c(v + u) is measurable on U and

cU(v) :=

∫
U
c(v + u)du

is finite.

2 For any subspace U ⊂ V and for each v ∈ V \ U we have

lim
τ→±∞

cU(τ · v) = 0
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Technical Set up: Distinguished Functions

`1, . . . , `m: linearly independent linear forms on E ,
B: convex and open neighborhood of 0 = (0, . . . , 0) in E such that
`j(x) > −1,
TB := B + iE , f ∈M(TB)

Definition

f is called as distinguished with respect to the data consisting of
V and linearly independent linear forms `1, . . . , `m if it satisfies

1 The function

g(s) := f (s)
m∏
j=1

`j(s)

`j(s) + 1

is holomorphic in TB .

2 For some c for all compact subsets K ⊂ TB , there is a
constant κ with

|g(s + iv)| ≤ κc(v)
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A Crucial Property of Distinguished Functions

Let C be a connected component of B \ ∪Ker(`j). On TC define:

f̃C (s) :=
1

(2π)d

∫
V
f (s + iv)dv

Proposition (Strauch and Tschinkel)

Let f be distinguished function w.r.t some data. Then

1 f̃C : TC → C is holomorphic.

2 There is an open and convex neighborhood B̃ of
0 = (0, . . . , 0), containing C , and linear forms ˜̀i (1 ≤ i ≤ m̃)
vanishing on V such that

s 7→ f̃C (s)
m̃∏
j=1

˜̀
j(s)

has a holomorphic continuation to TB̃
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Idea of the proof: General Case

Anisotropic Case  Base Case.

General Case:
Consider: f̃C (s) := 1

(2π)d

∫
V

f (s + iv) dv where d = dim V

By using the method of Strauch and Tschinkel (1999), we do
Induction on d .
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